
Torchnet: An Open-Source Platform for (Deep) Learning Research

Ronan Collobert LOCRONAN@FB.COM
Laurens van der Maaten LVDMAATEN@FB.COM
Armand Joulin AJOULIN@FB.COM

Facebook AI Research, 1 Hacker Way, Menlo Park CA 94025 / 770 Broadway, New York NY 10003, USA

Abstract
Torch 7 is a scientific computing platform that
supports both CPU and GPU computation, has
a light-weight wrapper in a simple scripting
language, and provides fast implementations of
common algebraic operations. It has become
one of the main frameworks for research in
(deep) machine learning. Torch does, however,
not provide abstractions and boilerplate code for
machine-learning experiments. As a result, re-
searchers repeatedly re-implement experimenta-
tion logics that are not interoperable. We intro-
duce Torchnet: an open-source framework that
provides abstractions and boilerplate logic for
machine learning. It encourages modular pro-
gramming and code re-use, which reduces the
chance of bugs, and it makes it straightforward
to use asynchronous data loading and efficient
multi-GPU computations. Torchnet is written in
pure Lua, which makes it easy to install on any
architecture with a Torch installation. We envi-
sion Torchnet to become a platform to which the
community contributes via plugins.

1. Introduction
Torch 7 is a versatile library for scientific computing
framework that contains efficient low-level implementa-
tions of major algebraic operations on both CPU (via
OpenMP/SSE) and GPU (via CUDA), coupled with a very
lightweight wrapper in the Lua scripting language (Col-
lobert et al., 2011). Torch has a very active developer com-
munity, which has developed packages for among others,
optimization, manifold learning, metric learning, and neu-
ral networks. The Torch neural networks package is cur-
rently a popular framework for deep learning because it
combines flexibility and computational efficiency.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

The Torch neural network package makes it easy to spec-
ify models, evaluate the output of these models, and com-
pute the derivatives of the model output with respect to its
parameters or input. However, implementing a complete
learning experiment still requires a substantial amount of
development for which torch/nn does not provide sup-
port: researchers need to develop an efficient data loader,
partition the available data into a training and test set, con-
nect the model (gradient) evaluation with an optimizer of
choice, implement performance measures to monitor the
training and assess the quality of the final model, and set up
logging. The development of such boilerplate code tends
to involve much code replication and is error-prone, which
may lead to incorrect research outcomes. In particular, the
lack of pre-defined abstractions and reference implementa-
tions makes it hard for researchers to write code that can
easily be adapted and re-used by others.

This paper presents Torchnet: a new open-source frame-
work that facilitates rapid development of (deep) machine-
learning experiments. Torchnet provides a collection of
key abstractions, boilerplate code, and reference imple-
mentations that are aimed at making code both re-usable
and efficient. In particular, Torchnet encourages a modular
design that clearly separates the dataset, the data loading
process, the model, the optimization, and the performance
measures. The different components are connected in an
Engine that implements model training and evaluation.
The modular design makes it easy to re-use code and de-
velop a series of experiments: for instance, running the
same experiments on a different dataset amounts to plug-
ging in a different dataloader, and changing the evaluation
criterion amounts to plugging in a different performance
meter. Torchnet does not compromise on efficiency: it pro-
vides out-of-the-box support for asynchronous data loading
and supports training on multiple GPUs.

We envision Torchnet to become a platform to which the
research community can contribute via plugins that im-
plement machine-learning experiments or tools. This will
make it easier to verify the details (and correctness) of ex-
perimental setups, to replicate results, and to re-use code.



Torchnet: An Open-Source Platform for (Deep) Learning Research

Dataset Description
BatchDataset Merges samples into batches.
ConcatDataset Concatenates K Datasets into one.
Coroutine
BatchDataset

BatchDataset that provides more
control via coroutines.

IndexedDataset Key-value store Dataset.
ListDataset Load samples in list via closure.
ResampleDataset Arbitrarily resampling of a Dataset.
ShuffleDataset Randomly shuffle samples in Dataset.
SplitDataset Splits dataset into disjoint sets.
TableDataset Load samples from a Lua table.
TransformDataset Transform samples via closure.

Table 1. Overview of all Datasets implemented in Torchnet.

2. Abstractions
Torchnet implements five main types of abstractions, which
draw inspiration from earlier Lush1 frameworks similar to
Torchnet: (1) Datasets, (2) DatasetIterators, (3)
Engines, (4) Meters, and (5) Logs. The five main ab-
stractions are presented separately below.

2.1. Datasets

The Dataset abstraction is an abstraction that provides
just two functions: (1) a size() function that returns the
number of samples in the dataset, and (2) a get(idx)
function that returns the idx-th sample in the dataset. In
line with Torchnet’s emphasis on modular programming,
complex data loaders can be constructed by plugging a
dataset into another dataset that performs operations such
as dataset concatenation, dataset splitting, batching of data,
resampling of data, filtering of data, and sample transfor-
mations. An overview of all operations that can be per-
formed on a dataset using Torchnet is provided in Table 1.
The main advantage of this modular approach is that it fa-
cilitates the construction of complex data loaders in a small
number of lines of code: when one wants to train a model
on a new dataset, all that needs to implemented is a func-
tion that returns the number of samples in that dataset and a
function that returns a specific sample. The datasets in Ta-
ble 1 can subsequently be used to rebalance the classes ac-
cording to a particular distribution, construct mini-batches
for training, split data into training and test data, etc. More-
over, the engine that is performing the training or evalua-
tion of the model is mostly agnostic to the exact dataset it is
trained on: given data loaders for, say the Imagenet (Deng
et al., 2009) and MS COCO (Lin et al., 2014b) datasets,
retraining (or testing) an Imagenet convolutional network
(He et al., 2016) on the MS COCO dataset amounts to sim-
ply plugging the core data loader for the MS COCO dataset
into the existing code.

1See http://lush.sourceforge.net/.

2.2. Dataset Iterators

When performing training or testing, one iterates over
all samples in a dataset and performs operations such as
parameter updates or accumulation of performance mea-
sures (which is what Engines and Meters do, respec-
tively). In its simplest form, such a dataset iterator is
a simple for loop that runs from one to the dataset size
and calls the get() function with loop value as input;
the DatasetIterator implements exactly this iterator
with an optional data-dependent filtering (that can be im-
plemented via a filter() closure). In practical scenar-
ios in which efficiency is important, one would rather per-
form the data loading asynchronously in multiple threads.
The ParallelDatasetIterator provides this func-
tionality: it has a predefined number of threads that all load
data from the underlying dataset, and when a sample is re-
quested from the iterator, the first available sample is re-
turned. Given sufficient threads, the resulting data iterator
will always have a sample available for immediate return,
which allows one to hide the loading and preprocessing
of data for training or testing altogether. This is partic-
ularly important when complex transforms are performed
on the data before it is fed to the model, e.g., the affine and
color transformations that are commonly applied on images
when training computer-vision models (Howard, 2013).

2.3. Engines

When experimenting with different models and datasets,
the underlying training procedure is often the same.
The Engine abstraction provides the boilerplate logic
necessary for the training and testing of models. In
particular, it implements the interaction between the
model (which is assumed to be a nn.Module), the
DatasetIterator and the loss function (which is as-
sumed to be a nn.Criterion). An instance of an
Engine implements two functions that specify these inter-
actions: (1) a train() function that samples data, propa-
gates this data through the model, computes the value of the
loss, propagates the loss gradient through the model, and
performs parameter updates; and (2) a test() function
that samples data, propagates the data through the model,
and measures the quality of the resulting predictions.

An Engine provides a collection of hooks that allow
the user to plugin experiment-specific code such as per-
formance Meters without editing the core logic of the
Engine. This encourages re-use of code and potentially
prevents bugs, whilst still providing complete flexibility in
writing training and testing code. A particularly nice fea-
ture of hooks is that they are implemented as closures, mak-
ing it easy to share logic (such as the copying of data sam-
ples to the GPU) between the code that is used for training
and the code that is used for testing models.

http://lush.sourceforge.net/


Torchnet: An Open-Source Platform for (Deep) Learning Research

Dataset Description
AUCMeter Area under ROC curve.
AverageValueMeter Average value of variable.
ClassErrorMeter Classification error.
ConfusionMeter Confusion matrix.
MultiLabel
ConfusionMeter

Confusion matrix for
multi-label problems.

NDCGMeter Normalized discounted cumulative gain.
PrecisionAtKMeter Precision at K.
PrecisionMeter Precision at threshold.
RecallMeter Recall at threshold.
TimeMeter Elapsed time.

Table 2. Overview of all Meters implemented in Torchnet.

The current Torchnet code contains two Engine imple-
mentations: (1) a SGDEngine that implements training
of models via SGD and (2) an OptimEngine that im-
plements training of models via any of the optimizers im-
plemented in the torch/optim package, which includes
AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2015),
conjugate gradients, and L-BFGS.

2.4. Meters

During both training and testing of learning models, one
typically wants to measure properties such as the time
needed to perform a training epoch, the value of the loss
function averaged over all examples, the area under the
ROC curve of a binary classifier, the classification er-
ror of a multi-class classifier, the precision and recall of
a retrieval model, or the normalized discounted cumula-
tive gain of a ranking algorithm. Torchnet provides a
wide variety of Meters that prevent researchers from re-
implementing such performance measurements over and
over again (and possibly introducing bugs when doing so).
Table 2 provides an overview of all meters currently sup-
ported. Most meters (with the exception of TimeMeter
and AverageValueMeter) implement two main func-
tions: (1) an add(output, target) function that
adds the values of model outputs and corresponding targets
for one or more samples to the meter, and (2) a value()
function that returns the current value of the meter.

2.5. Logs

Torchnet provides two Logs for logging experiments: a
simple Log and a RemoteLog. Both can output log in-
formation as raw text (to a file or stdout) and as JSON.

3. Example
This section presents a simple, working example of how
to train a logistic regressor on the MNIST dataset using
Torchnet2. The code first includes necessary dependencies:

2The example is included in the Torchnet repository.

require ’nn’
local tnt = require ’torchnet’
local mnist = require ’mnist’

Subsequently, we define a function that constructs an asyn-
chronous dataset iterator over the MNIST training or test
set. The dataset iterator receives as input a closure that
constructs the Torchnet Dataset object. Here, the dataset
is a ListDataset that simply returns the relevant row
from tensors that contain the images and the targets; in
practice, you would replace this ListDataset with your
own dataset definition. The core Dataset is wrapped in
a BatchDataset to construct mini-batches of size 128:

local function getIterator(mode)
return tnt.ParallelDatasetIterator{

nthread = 1,
init = function() require ’torchnet’ end,
closure = function()
local dataset = mnist[mode .. ’dataset’]()
return tnt.BatchDataset{

batchsize = 128,
dataset = tnt.ListDataset{
list = torch.range(

1, dataset.data:size(1)
),
load = function(idx)

return {
input = dataset.data[idx],
target = torch.LongTensor{
dataset.label[idx]

},
} -- sample contains input and target

end,
}

}
end,

}
end

Subsequently, we set up a simple linear model:

local net = nn.Sequential():add(nn.Linear(784,10))

Next, we initialize the Torchnet engine and implement
hooks that reset, update, and print the average loss and
the average classification error. The hook that updates
the average loss and classification error is called after the
forward() call on the training criterion:

local engine = tnt.SGDEngine()
local meter = tnt.AverageValueMeter()
local clerr = tnt.ClassErrorMeter{topk = {1}}
engine.hooks.onStartEpoch = function(state)

meter:reset()
clerr:reset()

end
engine.hooks.onForwardCriterion =
function(state)

meter:add(state.criterion.output)
clerr:add(

state.network.output, state.sample.target)



Torchnet: An Open-Source Platform for (Deep) Learning Research

print(string.format(
’avg. loss: %2.4f; avg. error: %2.4f’,
meter:value(), clerr:value{k = 1}))

end

Next, we minimize the logistic loss using SGD:

local criterion = nn.CrossEntropyCriterion()
engine:train{
network = net,
iterator = getIterator(’train’),
criterion = criterion,
lr = 0.1,
maxepoch = 10,

}

After the model is trained, we measure the average loss and
the classification error on the test set:

engine:test{
network = net,
iterator = getIterator(’test’),
criterion = criterion,

}

More advanced examples would likely implement addi-
tional hooks in the engine. For instance, if one wants
to measure the test error after each training epoch, this may
be implemented in the engine.hooks.onEndEpoch
hook. Making the same example run a GPU requires a few
simple additions to the code, in particular, to copy both the
model and the data to the GPU. Copying data samples to
a buffer on the GPU3 can be performed by implementing a
hook that is executed after the samples become available:

require ’cunn’
net = net:cuda()
criterion = criterion:cuda()
local input = torch.CudaTensor()
local target = torch.CudaTensor()
engine.hooks.onSample = function(state)

input:resize(
state.sample.input:size()

):copy(state.sample.input)
target:resize(

state.sample.target:size()
):copy(state.sample.target)
state.sample.input = input
state.sample.target = target

end

4. Comparison with Other Frameworks
Torchnet is substantially different from frameworks for
deep learning such as Caffe (Jia et al., 2014), Chainer4,
TensorFlow (Abadi et al., 2016), and Theano (Bergstra

3It is faster to copy data to a pre-allocated buffer on the GPU
than to do a copy via a call to cuda() because allocating and
freeing memory on the GPU is computationally expensive.

4See http://chainer.org for details.

et al., 2011) in that it does not focus on performing efficient
inference and gradient computations in deep networks. In-
stead, Torchnet provides a framework on top of a deep-
learning framework (in this case, torch/nn) that makes
rapid experimentation easier by providing boilerplate code
and by encouraging a modular design that makes it easy
to re-use code. Torchnet makes few assumptions about the
underlying learning framework: Torchnet abstractions can
readily be implemented for, e.g., Caffe or TensorFlow.

Torchnet is similar to Blocks and Fuel for Theano5.
In particular, Torchnet Datasets are similar to Fuel
Transformers, but Torchnet Datasets are more flex-
ible because they also implement batching, splitting, and
resampling of data. Torchnet DatasetIterators are
similar to Fuel DataStreams, but Torchnet has better
support for asynchronous, multi-threaded data loading:
Fuel provides a ServerDataStream that runs separate
data-loading process, which communicates with the trainer
via TCP sockets — multi-threaded data loading has to be
implemented manually. By contrast, Torchnet provides
a plug-in ParallelDatasetIterator that makes
asynchronous, multi-threaded data loading trivial to use.
A potential advantage of Fuel’s ServerDataStream
over Torchnet’s ParallelDatasetIterator is that
the data-loading process can run on a different machine
than the training code. In Blocks, Bricks are similar to
Modules of torch/nn, and MainLoop in Blocks is
similar to Torchnet’s Engine. Blocks implements some
basic performance measures such as classification errors
but, at present, Blocks does not provide a rich set of mea-
sures as implemented by Torchnet Meters.

5. Outlook
We envision Torchnet to become a community-owned plat-
form that, next to the core implementation of Torchnet,
provides a collection of subpackages in the same way that
Torch does. The most important subpackages we fore-
see will provide implementations of boilerplate code that
is relevant to machine-learning problems in, for instance,
computer vision (vision), natural language processing
(text), and speech processing (speech). However, other
subpackages may be smaller and focus on more specific
problems or even specific datasets. For instance, we envi-
sion having small subpackages that wrap vision datasets
such as the Imagenet and COCO datasets (Deng et al.,
2009; Lin et al., 2014a), speech datasets such as the TIMIT
and LibriSpeech datasets (Garofalo et al., 1993; Panayotov
et al., 2015), and text datasets such as the One Billion Word
Benchmark and WMT-146 datasets (Chelba et al., 2013)
into a Torchnet Dataset.

5See https://github.com/mila-udem for details.
6See http://statmt.org/wmt14 for details.

http://chainer.org
https://github.com/mila-udem
http://statmt.org/wmt14


Torchnet: An Open-Source Platform for (Deep) Learning Research

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viegas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. Ten-
sorflow: Large-scale machine learning on heterogeneous
distributed systems. In arXiv:1603.04467, 2016.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pas-
canu, R., Delalleau, O., Desjardins, G., Warde-Farley,
D., Goodfellow, I., Bergeron, A., and Bengio, Y.
Theano: Deep learning on gpus with python. In Pro-
ceedings of the NIPS BigLearn Workshop, 2011.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T.,
Koehn, P., and Robinson, T. One billion word bench-
mark for measuring progress in statistical language mod-
eling. In arXiv:1312.3005, 2013.

Chintala, S. https://github.com/soumith/
convnet-benchmarks, 2016.

Collobert, R., Kavukcuoglu, K., and Farabet, C. Torch7: A
matlab-like environment for machine learning. In Pro-
ceedings of the NIPS BigLearn Workshop, 2011.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition,
(CVPR), 2009.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Garofalo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pal-
lett, D.S., and Dahlgren, N.L. Timit acoustic-phonetic
continuous speech corpus ldc93s1, 1993.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2016.

Howard, A.G. Some improvements on deep convolu-
tional neural network based image classification. In
arXiv:1312.5402, 2013.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding.

In Proceedings of the ACM International Conference on
Multimedia, pp. 675–678, 2014.

Kingma, D.P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the International Con-
ference on Learning Representations, 2015.

Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, L. Microsoft COCO:
Common objects in context. In ECCV 2014, 2014a.

Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, L. Microsoft COCO:
Common objects in context. In ECCV 2014, 2014b.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. Lib-
rispeech: An asr corpus based on public domain audio
books. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp.
5206–5210, 2015.

https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks

