
Implementing Neural Networks Efficiently

Ronan Collobert1, Koray Kavukcuoglu2, and Clément Farabet3,4

1 Idiap Research Institute
Martigny, Switzerland

2 NEC Laboratories America
Princeton, NJ, USA

3 Courant Institute of Mathematical Sciences
New York University, New York, NY, USA

4 Université Paris-Est
Équipe A3SI - ESIEE Paris, France

Abstract. Neural networks and machine learning algorithms in gen-
eral require a flexible environment where new algorithm prototypes and
experiments can be set up as quickly as possible with best possible com-
putational performance. To that end, we provide a new framework called
Torch7, that is especially suited to achieve both of these competing goals.
Torch7 is a versatile numeric computing framework and machine learn-
ing library that extends a very lightweight and powerful programming
language Lua. Its goal is to provide a flexible environment to design,
train and deploy learning machines. Flexibility is obtained via Lua, an
extremely lightweight scripting language. High performance is obtained
via efficient OpenMP/SSE and CUDA implementations of low-level nu-
meric routines. Torch7 can also easily be interfaced to third-party soft-
ware thanks to Lua’s light C interface.

Runtime efficiency is probably perceived as the most important topic when
considering an efficient neural network implementation. One should however not
under-estimate the time spent in designing the right neural network for a given
task, or even the amount of work put into feeding data to the neural network
properly. Designing the right network for a given task in a short amount of
time requires a flexible development environment and a properly designed neural
network toolbox.

Several efficient (in terms of runtime execution) neural network libraries for
very specific needs are freely available. QuickNet5 is a good example in the speech
recognition community: it implements most commonly used algorithms, that
is multi-layer perceptrons with few layers. However, flexible libraries are quite
rare. It is not a trivial task to implement a library supporting a wide range of
complex networks (such as convolutional networks for images, text or speech...),
any type of connectivity (full connectivity, shared weights, order in layers...), or
several type of training algorithms (stochastic gradient, batch, second order like
LBFGS...). It is even more difficult to find a unified environment where one can

5 http://www.icsi.berkeley.edu/Speech/qn.html.

http://www.icsi.berkeley.edu/Speech/qn.html

2

easily read, prepare, feed properly the data to the network, or debug the internals
of the architecture (for example when the network is not training properly).

In Section 1, we will consider efficient neural network implementation in
terms of efficient environment. We will then focus on the runtime efficiency and
analyze different state-of-the-art approaches to speed-up the network training
and testing phases in section 2. In this work, our analysis is built on the expe-
rience we acquired with our own neural network implementation, Torch6, and
more particularly the last version Torch7.

1 Efficient Environment

An efficient environment for implementing neural networks should not be only
limited to neural networks themselves. It should provide all necessary tools for
efficient development of new numerical algorithms in general. Often one needs
various numerical algorithms to transform the data before feeding it to the neural
network. Algorithms will strongly vary from one research domain to the other.
Moreover, in the last few years, the research activity on neural networks started
to intersect with many other domains like optimization, linear algebra, parallel
processing to name a few. A successful framework should provide necessary tools
to cope with the variability in the development process. Only in that case the
framework would allow to not only easily investigate new types of models or new
training algorithms, but also to easily compare or combine neural networks with
other machine learning algorithms.

In order for a framework to provide necessary environment for development
of new numerical algorithms, its extension capabilities should be very advanced.
Machine learning researchers face many problems where there is need for using
existing libraries. As we will see in Section 2, this includes interfacing efficient
linear algebra libraries or even the neural network implementation itself. The
ability to interface these existing libraries with as little runtime and code devel-
opment overhead as possible is crucial for an efficient toolbox.

Finally, the neural network toolbox implementation itself should be modular
enough to allow for the creation of any kind of new neural network models or
implementation on different modalities of data, leaving the choice of the archi-
tecture as much as possible to the user.

In this section, we will cover the following three important points: efficiency
of development environment, extension capabilities and modular neural network
toolbox. The modular structure of Torch7 that fuses advantages of high-level
and low-level libraries is shown in Figure 1.

1.1 Scripting Language

A scripting (or interpreted) language is the most convenient solution for fast
prototyping and development of new algorithms. At the same time, it is crucial

6 http://www.torch.ch

http://www.torch.ch

3

BLAS LAPACK FFTW SSE ...

TH Library (C Interface to Numerics)

Torch Package
(Interface Between TH and Lua)

Packages (nn / optim / gnuplot / image / ...)

Can use high Level Torch interface
in Lua or low-level TH/luaT
interface in C

Lua

luaT

Fig. 1. Modular Structure of Torch7. Low level numerical libraries are interfaced with
TH to provide a unified tensor library. luaT provides essential data structures for
object/class manipulation in Lua. The core Torch package uses TH and luaT to provide
a numerical computing environment purely in Lua. All other packages can use either
Torch interface from inside Lua scripting environment or can interface low-level C
interfaces for increased performance optimizations.

for the interpreted language to have a lightweight C API, both in terms of
simplicity and efficiency. Simplicity in the C API encourages easier interfacing
to existing external libraries and efficiency is the single most important criterion
for large-scale applications.

In a complex development environment, the scripting language becomes the
“glue” between heterogeneous components: different structures of the same con-
cept (coming from different libraries) can be merged together using a high-level
language, while keeping all the functionalities that are exposed from all the dif-
ferent libraries.

Lua Among existing scripting languages7 finding the ones that satisfy runtime
efficiency severely restricts the number of possibilities. In our machine learning
framework Torch7, we chose Lua, the fastest interpreted language (with also the
fastest Just In Time-JIT compiler8) we could find. Lua has also the advantage
that it is designed to be easily embedded in a C application, and provides a
very clean C API, based on a virtual stack to pass values and carry out function
evaluation from C. This unifies the interface to C/C++ and minimizes the effort
required for wrapping third party libraries.

Lua is intended to be used as a powerful, light-weight scripting language for
any program that needs one. It is implemented as a library, written in pure C
in the common subset of ANSI C and C++. Quoting Lua webpage9,

Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua is

7 E.g. on http://shootout.alioth.debian.org.
8 http://luajit.org/
9 http://www.lua.org.

http://shootout.alioth.debian.org
http://luajit.org/
http://www.lua.org

4

dynamically typed, runs by interpreting bytecode for a register-based
virtual machine, and has automatic memory management with incre-
mental garbage collection, making it ideal for configuration, scripting,
and rapid prototyping.

Lua offers good support for object-oriented programming, functional program-
ming, and data-driven programming. As shown in Figure 2, it handles numerical
computations very efficiently (compared to C). This is a great asset for rapid
implementation of new numerical algorithms. Lua’s main type is table, which
implements associative arrays in a very efficient manner (see Figure 2). An as-
sociative array is an array that can be indexed not only with numbers, but also
with strings or any other value of the language. Tables have no fixed size, can be
resized dynamically, and can be used as “virtual tables” over another table, to
simulate various object-oriented paradigms. Tables are the only data structuring
mechanism in Lua, yet a powerful one. One can use tables to represent ordinary
arrays, symbol tables, sets, records, queues, and other data structures, in a sim-
ple, uniform, and efficient way. Lua uses tables to represent packages as well. In
addition, functions are first class citizens of the language. A function, just like
any other variable can be passed as a variable to or returned from a function.
Last, but not the least, Lua supports closures. Combined with tables, closures
provide a very powerful and efficient syntax for data handling and programming
complicated algorithms.

 1

 10

 100

 1000

 10000

ex
ec

ut
io

n
tim

e
(s

)

Mandelbrot

C

Lua JIT

Lua

Python JIT

Python

 1

 10

 100

 1000

 10000

Binary Trees

C

Lua JIT

Lua

Python JIT

Python

Fig. 2. Comparison of runtime efficiency of the C language (with gcc 4.4), Lua 5.1.4
and Python 2.7. Lua and Python JIT implementations were LuaJIT and PyPy, respec-
tively. The Mandelbrot and Binary Trees benchmarks are taken from “The Computer
Language Benchmarks Game”. All benchmarks were run using a single CPU on a high-
end 12 cores Xeon server. The Mandelbrot benchmark makes a heavy use of numbers,
while the Binary Trees benchmark makes a heavy use of data structures (struct in C,
tables in Python and Lua). The execution time is reported (on a log-scale axis) for
each language.

5

Why not Python? It is hard to talk about a programming language with-
out starting a flame war. While Lua is well known in the gaming programmer
community, mostly due to its speed advantage and great embedding capabilities,
Python is more popular in more general public. With no doubt, Python ships
with more libraries and one can find support about almost any problem easily in
many different contexts. However, Lua offers at least two important advantages
over Python:

– First and foremost, the simplicity of integrating existing C/C++ libraries
is very important. Many efficient numerical algorithms are implemented in
specialized packages in BLAS, LAPACK, FFTW and similar libraries. A
lightweight interface to existing code is crucial for achieving a high perfor-
mance environment. In section 2.8 we show quantitative results on efficiency
of Lua compared to Python when wrapping BLAS function calls.

– Second, since Lua is embeddable in C/C++, any prototyped application can
be turned into a final system/product with very little extra effort. Since Lua
is written in pure C and does not have dependency to any external library, it
can be easily used in embedded applications like, Android, iOS 10, FPGAs 11

and DSPs.

There are also alternatives to writing a custom interface between inter-
preted language and C/C++, like Simplified Wrapper and Interface Generator
(SWIG) 12. Although these might provide a simplified interface at first, writing
a tensor library with several linear algebra backends requires a very fine-grained
control and we found it is harder to manage this interface rather than using the
native Lua API.

In addition to its performance advantage on number of operations (see Fig-
ure 2), Lua also provides other unique advantages – rarely found simultaneously
in existing programming languages – for implementing a large-scale machine
learning framework. In the following section we will show how we extended Lua’s
basic numerical capabilities to a rather complete framework for developing com-
plex numerical algorithms.

1.2 Multi-purpose Efficient N-dimensional Tensor Object

Torch7 provides a generic Tensor library (called TH) that is written in pure
C. This library is interfaced in Lua, providing new efficient multi-dimensional
array types in the scripting language. Most packages in Torch7 (or third-party
packages that depend on Torch7) rely on this Tensor class to represent signals,
images, videos..., allowing Lua to nicely “glue” most libraries together. Fast
prototyping and creation of new packages is made possible, as the library is
available directly from both Lua and C. Interfacing or extending existing libraries
is very efficient. The following code demonstrates a few standard Tensor-based
operations, from the Lua side:

10 https://github.com/clementfarabet/torch-ios
11 http://www.neuflow.org
12 www.swig.org

https://github.com/clementfarabet/torch-ios
http://www.neuflow.org
www.swig.org

6

1 -- create a tensor of single -precision floats

2 t = torch.FloatTensor (100 ,100)

3
4 -- randomized: sampled from a normal distribution

5 l = torch.randn (100 ,100)

6
7 -- basic operators

8 r = t + l/2

9
10 -- in -place operators

11 r:add(0.5, t)

12
13 -- common operators

14 r = torch.log(torch.exp(-r)+10)

As in Matlab, multiple types can co-exist in Torch7, and it is easy to cast
from one to the other:

1 -- a single -precision tensor

2 tfloat = torch.FloatTensor (100)

3
4 -- converted to double -precision

5 tdouble = tfloat:double ()

6
7 r = torch.FloatTensor(tdouble:size ())

8
9 -- automatically casts from double ->float

10 r:copy(tdouble)

A sample matrix, matrix multiplication operation is done as in the following
example.

1 x = torch.Tensor (1000 ,5000)

2 y = torch.Tensor (5000 ,3000)

3 z = torch.mm(x,y)

4 print(z:size ())

5
6 1000

7 3000

8 [torch.LongStorage of size 2]

The Torch7 Tensor library provides a lot of classic operations (including
linear algebra operations), efficiently implemented in C, leveraging SSE instruc-
tions on Intel’s platforms and optionally binding linear algebra operations to
existing efficient BLAS/Lapack implementations (like Intel MKL, OpenBLAS
or ATLAS). As we will see in the next section, we also support OpenMP in-
structions and CUDA GPU computing for certain subset of operations where
these platforms offer unique performance advantages.

Related Approaches Our Tensor library implementation got mostly inspired
from SN [3] and Lush [5] toolboxes, which were one of the first to introduce

7

the concept (in a LISP language framework). Matlab also supports N-dimension
arrays (even though early releases only supported 2D matrices). Compared to
Matlab, we put big emphasis on memory allocation control, as we will see in
Section 2.2. Numpy13 is another popular alternative, but only available for the
Python language. As mentioned before, Lua offers unique advantages for a ma-
chine learning framework because of its speed and the simpler C interface.

1.3 Modular Neural Networks

Following [6], we view a neural network as a set of modules connected together
in a particular graph. In Torch7, the “nn” package provides a set of standard
neural network modules, as well as a set of container modules that can be used
to define arbitrary directed (acyclic or not) graphs. By explicitly describing the
graph’s architecture, using pluggable modules, we avoid the complexity of a
graph parser, or any other middle-ware compiler. In practice, most networks
are either sequential, or have simple branching patterns and recursions. The
following example shows how to describe a multi-layer perceptron:

1 mlp = nn.Sequential ()

2 mlp:add(nn.Linear (100 ,1000))

3 mlp:add(nn.Tanh ())

4 mlp:add(nn.Linear (1000 ,10))

5 mlp:add(nn.SoftMax ())

Each module (or container) provides standard functions to compute its out-
put state, and back-propagate derivatives to its inputs, and to its internal pa-
rameters. Given the previous network, an input X, and the gradient of some
error E with respect to the output Y —dE/dY —these three functions can be
called like this:

1 -- compute the activations Y = f(X)

2 Y = mlp:updateOutput(X)

3
4 -- compute some loss E = l(Y,T)

5 E = loss:updateOutput(Y,T)

6
7 -- compute the gradient dE/dY = dl(Y,T)/dY

8 dE_dY = loss:updateGradInput(Y,T)

9
10 -- back -propagate the gradients , down to dE/dX

11 dE_dX = mlp:updateGradInput(X,dE_dY)

12
13 -- compute the gradients wrt the weights: dE/dW

14 mlp:accGradParameters(X,dE_dY)

The “nn” package in Torch7 provides about 80 different neural network mod-
ules, allowing the user to implement most existing neural networks with minimal
effort in pure Lua.

13 http://numpy.scipy.org.

http://numpy.scipy.org

8

Leveraging the TH library Neural network modules in Torch7 use Tensors
provided by the TH library (see Section 1.2) to represent their own input data,
output or internal states. Most modules are simply written in Lua, using the
Torch package for intensive numerical operations. Only packages which require
very specific operations have a dedicated C back-end. And, even in this case
many of them use the TH library interface from C. In any case, Tensors are used
as data containers to interact seamlessly with the rest of the library.

Training Algorithms In Torch7, every neural network module, given the par-
tial derivatives with respect to its outputs, is able to compute the partial deriva-
tive with respect to its parameters and its inputs. Thus, any complicated net-
work structure can be trained using gradient-based optimization methods. Batch,
mini-batch and stochastic gradient descent algorithms are supported. More ad-
vanced algorithms, such as second-order gradient descent algorithms like conju-
gate gradient or LBFGS are also possible, thanks to a numerical package called
“optim”. While this optimization package is designed to be used stand-alone,
it also provides second-order optimization capabilities for neural networks when
used with the “nn” package.

1.4 Additional Torch7 Packages

Torch7 comes with many built-in and third-party packages. In order to encour-
age collaborations and redistribution of machine learning algorithms, a built-in
package manager is provided. It can easily download, compile and install addi-
tional Torch7 packages from any package repository, when needed. At this time,
the most interesting packages related to numerical computation or numerical
analysis are:

– torch: Torch7 ’s main package: provides Tensors, easy serialization and other
basic functionalities. This package provides, Matlab-like functions to create,
transform and use Tensors.

– gnuplot: This package provides plotting interface to Gnuplot using Tensors.
– image: An image processing package. It provides all the standard image

processing functions such as loading and saving images, rescaling, rotating,
converting color spaces, filtering operations, . . .

– optim: A compact package providing steepest descent, conjugate gradient
and limited memory BFGS implementations.

– qt: Full bindings between Qt and Lua14, with transparent conversion of
Torch7 Tensors from/to QImages. Great for quickly developing interactive
demos with advanced GUIs (running natively on Linux, Mac or Windows
platforms).

The list of available packages is constantly growing, as Lua makes it easy
to interface any C library. Third-party packages include: unsup, which contains

14 Thanks to Léon Bottou for this huge piece of work.

9

several unsupervised learning algorithms like sparse coding and auto encoders.
mattorch, which provides a two-way interface between Matlab’s matrix format
and Torch’s tensor; parallel, which provides simple routines to fork and execute
Lua code on local or remote machines, and exchange data using Torch7 ’s seri-
alization mechanism; camera, a simple wrapper to camera/webcam drivers on
Linux and MacOSX; imgraph, a package that provides lots of routines to create
edge-weighted graphs on images, and manipulate these graphs.

2 Efficient Runtime Execution

Torch7 has been designed with efficiency in mind, leveraging SSE when possible
and supporting two ways of parallelization: OpenMP and CUDA. The Tensor
library (which is interfaced to Lua using the “torch” package) makes heavy use
of these techniques. From the user viewpoint, enabling CUDA and OpenMP
can lead to great speedups in any “Lua” script, at zero implementation cost
(because most packages rely on the Tensor library). Other packages (like the
“nn” package) also leverage OpenMP and CUDA for more specific usages not
covered by the Tensor library. In the following we explain specific advantages of
Torch7 for achieving an excellent runtime performance.

2.1 Float or Double Representations

One of the major computational bottlenecks of modern computers is their mem-
ory bandwidth. When implementing any numerical algorithm, the number of
memory accesses should be always reduced by all means. This has an impact
not only on the coding style, but also on the floating point type we will choose
when implementing neural networks. A C “double” takes usually 8 bytes in mem-
ory, while C “float” takes only 4. Given that high precision is rarely required in
neural networks, one might consider using floating point precision in most cases.
On a simple matrix-matrix operation, speedups of ×2 are common when using
floats instead of doubles. In practice similar speedups are also observed in neural
networks using floating point precision. In that respect, in Torch7, the user can
easily choose (at runtime) the default floating point type.

2.2 Memory Allocation Control

One of the main complaints about using high level interfaces (such as Matlab)
for numerical programming is the loss of control over memory allocation. The
high-level abstraction makes it very hard for the researcher to know when a
copy of a tensor is created. Although this is not a major problem for small-
scale applications, as the data size grows, repeated copy and memory allocation
might become problematic and even a bottleneck for the algorithm. To avoid such
problems, Torch7 tensor library is designed to support complete control over new
memory allocation only when the user wants to use it. To better demonstrate
this point, we repeat the matrix multiplication example.

10

1 x = torch.Tensor (1000 ,5000)

2 y = torch.Tensor (5000 ,3000)

3 z = torch.mm(x,y) print(z:size ())

4
5 1000

6 3000

7 [torch.LongStorage of size 2]

One can see that the tensor z, which did not exist before, is newly allocated in this
context. One can imagine that these series of operations are done repeatedly inside a
loop. In this case, Torch7 allows the following intuitive syntax.

1 x = torch.Tensor (1000 ,5000)

2 y = torch.Tensor (5000 ,3000)

3 z = torch.Tensor (1000 ,3000)

4 torch.mm(z,x,y)

As it can be seen from the example, the torch.mm function also can take three
arguments, in which case the first argument becomes the result of the operation. This
syntax is implemented for all operations in the Tensor library consistently, so that
for every single operation, the user has the choice of passing in the target Tensor or
allocating a new one without any overhead and heavy syntax. For example the following
element-wise Sin operation can be represented in two different ways.

1 x = torch.rand (1000)

2
3 -- a new tensor is created

4 tsin = torch.sin(x)

5
6 -- a scalar one is added to tensor x (x is reused)

7 x:add(1)

8
9 -- tsin is reused

10 torch.sin(tsin ,x)

In this example, both scalar addition to tensor x and calculating the Sin of resulting
tensor did not allocate any new memory. In the above example, we also hinted another
use of tensor library, where one can make method calls on a tensor object, as in any
object oriented language. This syntax makes it explicit that the operation is directly
applied on the object that the method call is done.

2.3 BLAS/LAPACK Interfaces

The key to a successful numerical computation framework is to have efficient imple-
mentations of linear algebra operations. This requires highly sophisticated algorithms
with very precise implementations. In order to be able to provide the best experience,
the C tensor library (TH) that is included in Torch7 interfaces BLAS and LAPACK
libraries.15 All the major Level 1, 2 and 3 BLAS operations like matrix-vector prod-
ucts, matrix-matrix products and most major linear algebra routines like singular value

15 http://www.netlib.org.

http://www.netlib.org

11

decomposition, matrix inverse, least square solutions are interfaced to BLAS and LA-
PACK libraries respectively. This interface provides the user with a rich experience of
building block operations where higher level algorithms can easily be implemented.

2.4 SIMD Instructions

Most computations involved in a neural network consist in applying the same type of
operations over (possibly large) vectors or matrices. Several CPU architectures, such
as PowerPC, Intel or ARM support SIMD (Single Instruction, Multiple Data) opera-
tions which are perfectly suited for this kind of task: for example with SSE (Streaming
SIMD Extensions) on Intel processors one might perform 4 additions over a vector with
a unique instruction. Calling these instructions instead of regular CPU instructions
might lead to great speedup. This type of optimization is unfortunately CPU-specific.
Fortunately, in many cases one can rely on BLAS/LAPACK implementations special-
ized for a given platform, which leverage SIMD instructions. For other neural network
specific cases, such as convolutions, one must implement specialized routines for each
architecture of choice. In Torch7, we try to leverage SSE (on Intel architectures) and
NEON (on ARM architectures) whenever possible. Compared to a non-SSE implemen-
tation 1.5× speedup are common, as shown in Figure 3 in the case of convolutional
neural networks.

 0

 500

 1000

 1500

 2000

No-SSE

SSE
BLAS

ex
am

pl
es

/s

CNN 32x32

 0

 50

 100

 150

 200

 250

No-SSE

SSE
BLAS

CNN 96x96

 0
 5

 10
 15
 20

 25
 30
 35
 40

No-SSE

SSE
BLAS

CNN 256x256

Fig. 3. Comparison of several convolutional neural network implementations (without
SSE, with SSE or with BLAS). Tests were conducted using one core on a Intel bi-Xeon
X5690 server. Performance is given in number of examples processed by second (higher
is better). Three different architectures were tested, with input image sizes of 32x32,
96x96 and 256x256 respectively.

2.5 Ordering Memory Accesses

As already mentioned in Section 2.1 and Section 2.2, memory accesses are one of the
main bottleneck on today’s computers. In fact, not only the number of accesses is
important, but also the order of these accesses. For example, operations with tensors
not contiguous in memory (say, with extra jumps between each element of the tensor)
should always be avoided. In many cases, it is better to organize the tensor in a contigu-
ous memory block (possibly at the cost of the copy), before performing any intensive

12

computations. A striking example for neural networks is convolutions. When perform-
ing a convolution over an image, successive dot products are done between the kernel
and all possible patches of the image. One can create a copy of all these patches before-
hand (the drawback being a huge memory cost for large convolutions or large images)
and then apply a matrix-matrix operation (using BLAS) to compute all dot products.
The memory consumption increases proportional to the number of pixels of convolu-
tional kernel. As shown in Figure 3, this leads to unbeatable runtime performance, even
though the initial memory copy is quite large. Torch7 provides this implementation as
part of the neural net package too. Whenever there is sufficient memory available, it
is advantageous to use this implementation which uses an innovative design that takes
advantage of multi-core CPU architectures.

2.6 OpenMP support

Open Multi-Processing (OpenMP) provides a shared memory CPU parallelization
framework on C/C++ and Fortran languages on almost every operating system and
compiler toolset. It generally requires minimal modification for integrating into an ex-
isting project. Torch7 is designed and developed to use OpenMP directives for various
operations in its tensor library and neural network package. Although the details of
the OpenMP specification is beyond the scope of this work, below we show one of the
most commonly used OpenMP directive, parallelization over for-loops:

1 // private makes a copy for each thread

2 #pragma omp parallel for private(i)

3 for (i=0; i<N; i++)

4 {

5 a[i] = i*i;

6 }

Without the omp parallel for directive at line 2, this piece of code will run to com-
pletion using a single thread. However, since each loop iteration is independent from
each other, it becomes a trivial single line addition to existing code that parallelizes
this computation over many cores.

Torch7 automatically detects if the compiler supports OpenMP directives and com-
piles a high level package that adds multi-threaded tensor operations, convolutions and
several neural network classes. The switch from single threaded code to multi-threaded
code is completely transparent to the user and it only requires -l openmp argument to
be passed to torch executable. With this option, Torch7 by default uses the OpenMP
enabled function calls when available. The number of threads to be used can be spec-
ified by either setting the “OMP NUM THREADS” environment variable to desired
number:

1 bash# export OMP_NUM_THREADS =4

or from inside lua by

1 torch.setnumthreads (4)

function. Moreover, openmp can even be temporarily enabled or disabled using the
following function calls.

1 torch.setnumthreads (1)

2 torch.setnumthreads(N)

13

Multi-threading of BLAS operations rely on the specific BLAS library that Torch7
is linked against. For example Intel’s MKL library also uses OpenMP for parallelizing
Level 3 BLAS operations. In the neural network package nn, the convolutional layers,
most common non-linearity functions like tanh and sigmoid, pooling operations like
average, sum and max pooling and various other primitive operations like sum, square
modules are all parallelized. For all the models that apply element-wise operations, the
parallelization is almost as trivial as shown in the example above. For more compli-
cated modules like convolutional layers with multiple input output feature maps, the
function evaluation pass is parallelized over output feature maps so that every output
feature is calculated in parallel. For calculating the gradient wrt kernels, operations are
parallelized over kernels and over input feature maps for gradient wrt inputs. Using
this strategy the convolutional network architecture can be sped up almost linearly.

2.7 CUDA support

CUDA (Compute Unified Device Architecture) is nVidia’s framework for programming
their graphics processors to perform general purpose computations. CUDA exposes the
hierarchy of memories available to the graphics processor, the two main ones being the
external (large, high-latency) DRAM and the internal shared memory (a couple of kB,
low-latency). It also exposes the hierarchy of compute cores, and how they interact
with each other, and with the different types of memory.

Contrary to common belief, we found that writing CUDA code (kernels) can be
significantly simplified. It is very easy to obtain decent performance, and the sim-
plest kernels already yield satisfying speedups over regular C. The only three things to
know, and carefully handle are: understanding the interaction between shared memory
and threads; understand memory coalescing, to maximize bandwidth to/from external
DRAM; understand the hierarchy of processing units, to efficiently divide the workload
between blocks and threads. Once understood, these concepts were sufficient to allow
us to write our own 2D convolutions, which are computed at about 200GFLOP/s on a
GTX580, for large enough inputs. For smaller inputs, our OpenMP+SSE implementa-
tion remains more efficient. It is worth mentioning that Torch7 employs an efficient, yet
general method for implementing a wide variety of CUDA kernels. As it is shown in the
upcoming sections, this strategy results in the best performance in most cases. How-
ever, it is also possible to achieve superior performance by developing CUDA kernels
under specific assumptions, like particular input or operator shape and sizes. Despite
the performance advantage, these cases generally require significant development effort
and produce modules that can not be reused, thus they are not suitable for a general
machine learning library.

Once built with CUDA, Torch7 provides a new Tensor type: torch.CudaTensor.
Tensors with this particular type lives in the GPU’s DRAM memory. All operators
defined on standard Tensors are also defined on CudaTensors, which completely ab-
stracts the use of the graphics processor. Here is a small illustrative example, that
demonstrates the simplicity of the interface:

1 -- lives in the CPU ’s DRAM

2 tf = torch.FloatTensor (4 ,100 ,100)

3
4 -- lives in the GPU ’s DRAM

5 tc = tf:cuda()

6

14

7 -- performed by the GPU

8 tc:mul (3)

9
10 -- res lives in the CPU ’s DRAM

11 res = tc:float()

On top of the Tensors’ main operators, all the matrix-based operators are available,
as well as most standard convolution routines.

2.8 Benchmarks

In this section we analyze the efficiency of Torch7 in two different setups: first in the
framework of a matrix-matrix multiplication benchmark, then when training various
neural networks. To that effect, we compare Torch7 with Numpy and Theano. We
chose Numpy as a reference because it is a widely-used numerical library for Python,
the latter being itself a widely-used scripting language. Theano [1] is a recent compiler
for mathematical expressions, built upon Python and Numpy, and which has been
shown as over-performing many neural network implementations, which makes it a
very relevant baseline. In our experiments we chose the latest version of each software,
that is Theano 0.5, Numpy 1.6.1 and Scipy 0.10.1.

Measuring the Overhead of Interpreted Languages The majority of the
computation for neural networks and many numerical algorithms is spent in BLAS calls
for performing linear algebra operations. To that end, we demonstrate the efficiency of
the Torch7 and also the underlying C library TH.

 0

 2

 4

 6

 8

 10

 12

CPUx1 CPUx2 CPUx4 CPUx8 CPUx12

T
im

e
S

pe
nt

 (
s)

100000 Iterations of (100,100)x(100,100) using Floats

TH
torch

numpy
nn

theano

 0

 1

 2

 3

 4

 5

 6

 7

 8

CPUx1 CPUx2 CPUx4 CPUx8 CPUx12

T
im

e
S

pe
nt

 (
s)

100 Iterations of (1000,1000)x(1000,1000) using Floats

TH
torch

numpy
nn

theano

Fig. 4. Benchmarks of matrix multiplication performance using C, Torch7 torch pack-
age, nn package in Torch7, Numpy and Theano. Tests were conducted on a machine
with two Intel Xeon X5690 CPUs with 6 computational cores in each CPU. Hyper-
threading was disabled. We considered multi-thread computation using 1, 2, 4, 8 and
12 CPU cores. Performance is given in seconds of time spent for processing, therefore
smaller is better.

The Torch7 numerical routines follow a simple design that contains layers. The
first layer is an efficient C library that provides a high level tensor package (TH).
TH library provides a templated design that enables the choice of different precisions.

15

Available types are, Byte (unsigned char), Char (char), Short (16 bit integer), Integer
(32 bit integer), Long (64 bit integer), Float (32 bit floating point) and Double (64
bit floating precision). TH library does not have any dependencies to Lua or any other
language other than standard C libraries, therefore it is also suitable to be used by
other projects that rely on efficient numerical routines. The choice of C language was
a careful choice as with Lua. Since TH uses only C, it can be compiled in almost any
programming environment like cellphones, DSP, embedded systems, etc. TH provides
interface to many BLAS operations, but also contains hand-coded operations for all
functions in case no BLAS library is available. It also provides and interface to several
most widely used LAPACK routines for linear algebra. The second layer on top of
TH is the torch package that integrates TH into Lua. All of the TH mathematical
operations are interfaced from the Lua language in the torch packages. Finally, the
nn package uses the torch package to provide a modular, yet fast and efficient, neural
network library.

One might argue that such a layered approach would introduce quite a bit of
overhead. In order to quantify the overhead coming from each layer, we selected matrix-
matrix multiplication as our test case since it is one of the most widely used operations
in linear algebra and ran tests using different sizes of matrices and different layers of
programming. We used 100×100 and 1000×1000, matrices and benchmarked using a C
only program that directly uses TH library, using torch library, using linear layer (with
no bias) from nn package in Torch7. We also included tests using Numpy package and
finally Theano. We compiled all packages using Intel MKL library to be able achieve the
best possible performance and maximize the advantages of using CPU threading. As it
can be seen from the results given in Figure 4, the overhead coming from TH, Torch7
or nn libraries is minimal, even for small size matrices. Even though Python gets a bit
more overhead, for larger matrices the overhead is minimal in all configurations.

Comparing Machine Learning Packages In a recent paper [1], the authors in-
troduced a new compiler for mathematical expressions, built upon Python and Numpy.
As for Torch7, Theano is (at this time) mainly used in a neural network framework.
Theano can be either run on a CPU or a GPU. The authors of Theano showed bench-
marks (involving the training of various neural networks architectures) comparing
with other alternative implementations (when running Theano over a GPU), including
Torch5, Matlab with GPUmat (running over a GPU) or EBLearn 16. Below, we repro-
duce these exact benchmarks, limiting ourselves to Torch7 versus Theano, as Theano
appears already faster than any existing implementation.

For a fair comparison, we compiled both Numpy and SciPy (on which Theano
relies) and Torch7 against MKL Intel library. Latest versions of Theano also support
direct link against MKL for certain operations (without passing by Numpy), which
we setup carefully. We ran the experiments on a Intel Xeon X5690 with 12 cores.
We optionally used a nVidia Tesla M2090 GPU. Following [1] benchmark suite, we
considered the training of three kinds of multi-layer Perceptrons. 1. 784 inputs, 10
classes, cross-entropy cost, and respectively no-hidden layer. 2. One hidden layer of
size 500. 3. Three hidden layers of size 1000. We also considered the training of three
kinds of convolutional neural networks (as shown in Table 1) on 32 × 32, 96 × 96, and
256×256 input images, following exactly the architectures given in [1]. The optimization
algorithms we used were pure stochastic gradient descent (SGD) and SGD with a mini-
batch of 60 examples. We compare all architectures running on a single CPU core, over

16 http://www.eblearn.sf.net

http://www.eblearn.sf.net

16

Table 1. Convolutional Network Architectures used in the benchmark study.

32 × 32 96 × 96 256 × 256 # F. Maps

1.c Convolution 5 × 5 7 × 7 7 × 7 6

1.p Max-pooling 2 × 2 3 × 3 5 × 5 6

2.c Convolution 5 × 5 7 × 7 7 × 7 16

2.p Max-pooling 2 × 2 3 × 3 4 × 4 16

3.l Linear 120 output features

4.o Linear 10 output features

multiple cores using OpenMP, or on the GPU. Note that Theano does not support
OpenMP. However, it gets a speedup (on the multi-layer Perceptron benchmarks),
since the Intel MKL library (called through Numpy) supports multiple threads using
OpenMP.

As shown in Figure 5, Torch7 is faster than Theano on most benchmarks. Inter-
estingly, Theano underperforms for small architectures using pure SGD training (left
column in Figure 5), which might be explained by a Python overhead, as mentioned
in the previous section. Another interesting comment is the surprising performance of
OpenMP implementations compared to the GPU implementation. As it can be seen
from the graphs only largest network architectures will benefit from using the GPU.
It is also worth mentioning that for CNN with 32 × 32 inputs using batch training,
Theano’s GPU implementation is superior than Torch 7. Under certain conditions,
GPU optimizations might pay off by providing significant speed-ups, however they
also require significant development effort for covering a small input domain. For CNN
experiments a second Torch7 benchmark, TorchMM is included. In this case matrix-
matrix product operations for performing convolutions as explained in section 2.5 are
used. It can be seen that this implementation significantly outperforms other models
from Theano and Torch7, including GPU implementations.

3 Efficient Optimization Heuristics

As pointed in Chapter LeonBottou, the size of datasets have grown faster than the
speed of processors in the last couple of years. When estimating the parameters of a
neural network, it is then crucial to use an optimization procedure that can scale ac-
cordingly. Recently, research on optimization methods for neural networks has become
an important topic [2,4,8,7]. Torch 7 provides a flexible framework designed particu-
larly to make it easy for developing optimization algorithms on neural networks.

Let us consider the case of supervised learning, when one has a training set of N
examples (xn, yn), with xn an observed input vector and yn an output target vector
that we wish to predict. We consider a loss function l(ŷn, yn) that measures the cost
of predicting ŷn when the actual answer is yn. We also consider a predictor fw(xn),
with trainable parameters w. The task of learning can be defined as finding the vector
w that minimizes the loss function L over the entire training set:

17

 0

 20000

 40000

 60000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

MLP 784/10

 0

 80000

 160000

 240000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

MLP 784/10 (batch)

 0

 2000

 4000

 6000

 8000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

MLP 784/500/10

 0

 20000

 40000

 60000

 80000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

MLP 784/500/10 (batch)

 0

 500

 1000

 1500

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

MLP 784/1000x3/10

Torch
Theano

 0

 5000

 10000

 15000

 20000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

MLP 784/1000x3/10 (batch)

 0

 1000

 2000

 3000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

CNN 32x32

 0

 5000

 10000

 15000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

CNN 32x32 (batch)

 0

 200

 400

 600

 800

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

CNN 96x96

 0

 250

 500

 750

 1000

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

CNN 96x96 (batch)

 0

 50

 100

 150

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

ex
am

pl
es

/s

CNN 256x256

Torch
TorchMM

Theano

 0

 50

 100

 150

CPUx1

CPUx2

CPUx3

CPUx4

CPUx5

CPUx6

CPUx7

CPUx8

CPUx9

CPUx10

CPUx11

CPUx12

GPU

CNN 256x256 (batch)

Fig. 5. Benchmarks of Torch7 versus Theano, while training various neural networks
architectures with SGD algorithm. Tests were conducted on a machine with two Intel
Xeon X5690 CPUs and Nvidia M2090 GPU. We considered multi-thread computation
using 1 to 12 CPU cores using OpenMP and GPU with Nvidia CUDA interface. Perfor-
mance is given in number of examples processed by second (higher is better). “batch”
means 60 examples at a time were fed when training with SGD. TorchMM uses the
convolutional neural network layer implementation introduced in Section 2.5.

18

L(w) =
1

N

N∑
n=1

l(fw(xn), yn), (1)

w∗ = argmin
w

L(w). (2)

This general form of loss minimization can be easily carried out using one of a
variety of optimization methods like Conjugate Gradient Descent (CG), BFGS or Lim-
ited Memory BFGS, Levenberg-Marquardt methods or simple SGD. In Torch7, these
heuristics and methods can be carried out simply, using one unifying idea: decoupling
the form of the function fw from the optimization procedure. By grouping all the
trainable parameters into a single parameter vector and using a vector of gradients of
the same size for gradients, the type and shape of the neural network is completely
abstracted from the developer. Combined with powerful closure mechanism of Lua, one
can develop optimization algorithms for most complicated neural network models as
easy for the simplest ones. The following code shows how this is done:

1 -- create an arbitrary model:

2 model = nn.Sequential ()

3 model:add(nn.Linear (100 ,1000))

4 model:add(nn.Tanh())

5 model:add(nn.Linear (1000 ,10))

6
7 -- and a loss function:

8 loss = nn.MSECriterion ()

9
10 -- extract the parameters , and the gradient holder

11 w,dloss_dw = model:getParameters ()

12
13 -- w and dl_dw are two vectors of the same size

Once the trainable parameter vector has been extracted, arbitrary, external opti-
mization procedures can be used. Torch7 provides a few standard methods (LBFGS,
CG, SGD, ASGD) which simply require: (1) a function that computes Lw and dL

dw
and

(2) the parameter vectors w and dL/dw. Of course, Lw can be either the true loss, or
any approximation of it. The function that is defined is responsible for sampling from
the training dataset, and estimating these approximations.

With these two concepts in mind, one can easily define a loop over a training
dataset, and define a closure at each iteration, which computes Lw and dL

dw
. The fol-

lowing listing shows an example of such a loop, assuming a pre-shuffled training dataset
in which each entry is a tuple (xn, yn):

1 -- assuming a training dataset ’trainset ’, and the model

2 -- defined above: ’model ’, ’w’ and ’dL_dw ’:

3 for e = 1,nepochs do

4 for i,sample in ipairs(trainset) do

5 -- next training pair:

6 x_n = sample [1]

7 y_n = sample [2]

8
9 -- create closure that estimates y_n_hat = f_w(x_n),

19

10 -- stochastically

11 feval = function ()

12 -- estimate loss:

13 y_n_hat = model:forward(x_n)

14 f = loss:forward(y_n_hat , y_n)

15
16 -- estimate gradients:

17 dloss_dw:zero()

18 dloss_dy_n_hat = loss:backward(y_n_hat , y_n)

19 model:backward(x_n , dloss_dy_n_hat)

20
21 -- return loss , and gradients

22 return f,dloss_dw

23 end

24
25 -- now that the closure is defined , pass it to an

26 -- optimization algorithm:

27 w,fs = optim.sgd(feval ,w)

28
29 -- + the new w is returned , but as computations are

30 -- done in place , it is typically not necessary to

31 -- store it (the old w contains the new value)

32 -- + fs is a list of all the function (loss)

33 -- evaluations that were done during optimization.

34 -- SGD only returns one value , as it does not

35 -- perform any line search.

36 end

In the listing above, one can see that the loss and gradient estimation can be easily
changed at runtime, and estimated over arbitrary batch sizes. To use a batch size
different than 1 (as done above), one simply needs to create a list of training pairs, and
the feval function needs to loop over these training pairs to estimate the approximate
loss and gradients.

4 Conclusion

Compared to the early days of neural network training, the challenges towards an effi-
cient implementation did not change a lot, however the means changed slightly. Already
in the late 80’s, the SN [3] toolbox was providing a scripting language (LISP) for build-
ing neural networks in a modular way. At the time, memory bandwidth and processor
speed were about the same order of magnitude. Nowadays, we have to pay much more
attention on memory accesses, counting number of instructions for optimizing the code
is not sufficient anymore. Specific vectorized instructions can be easily integrated, but
will not give order of magnitude speedups. In the end, what brings most advantage
is parallelization. As computers become more and more parallel, it becomes crucial
to leverage parallelization frameworks properly, such as OpenMP. On a more extreme
side, GPUs (for e.g. running with CUDA) are not as attractive as some could have
expected: GPU-specific implementations require heavy extra work for a speedup (see
Figure 5) which can be quite disappointing compared to what one can get with few
extra lines of code with OpenMP.

20

Acknowledgments

Torch7 is the official successor to Torch317 and Torch5.18 Over the years many distin-
guished machine learning researchers have contributed to Torch, including Léon Bottou
(we thank him in particular for providing the Qt library interface), Jason Weston, Iain
Melvin, Samy Bengio and Johnny Mariéthoz.

We would also like to thank Yann LeCun and Léon Bottou for sharing their work
in SN, Lush, and extending their support and advices.

Finally, we thank James Bergstra for making his benchmark code available.19

References

1. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, and Y. Bengio. Theano: a CPU and GPU math expression compiler.
In Proceedings of the Python for Scientific Computing Conference (SciPy), 2010.
2.8, 2.8, 2.8

2. L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Y. Lechevallier and G. Saporta, editors, Proceedings of the 19th International
Conference on Computational Statistics (COMPSTAT’2010), pages 177–187, Paris,
France, August 2010. Springer. 3

3. L. Bottou and Y. LeCun. SN: A simulator for connectionist models. In Proceedings
of NeuroNimes 88, Nimes, France, 1988. 1.2, 4

4. Q.V. Le, A. Coates, B. Prochnow, and A.Y. Ng. On optimization methods for deep
learning. Learning, pages 265–272, 2011. 3

5. Y. LeCun and L. Bottou. Lush reference manual. Technical report, 2002. code
available at http://lush.sourceforge.net. 1.2

6. Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In G.B.
Orr and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, pages 9–50.
Springer, 1998. 1.3

7. J. Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML), volume 951, page 2010,
2010. 3

8. O. Vinyals and D. Povey. Krylov subspace descent for deep learning. Arxiv preprint
arXiv:1111.4259, 2011. 3

17 http://www.torch.ch/torch3
18 http://torch5.sourceforge.net/
19 http://www.github.com/jaberg/DeepLearningBenchmarks.

http://www.torch.ch/torch3
http://torch5.sourceforge.net/
http://www.github.com/jaberg/DeepLearningBenchmarks

	Implementing Neural Networks Efficiently

