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Summary

. Perceptron Adaline
McCulloch and Pitts . ptI . : . . :
: e Linear classification e Linear classification/regression
e Boolean functions :
.. e Convergence if separable e Delta Rule
e No training ..
e Generalization? e Convergence?
VM
Margin Perceptron . S : .
. . . Kernel Perceptron e Linear classification
e Linear classification . : : : :
. .. e Non-linear classification e Non-linear with kernels
e Margin: better generalization? . ..
e Margin: better generalization?

Multi Layer Perceptron Unsupervised Training ( « 1e . )
. . . : : Specializations
e Non-linear classification /regression e Reconstruction bottleneck: e RBF
e Gradient descent (backpro - layer size :
G ( prop) . e Convolutions 1D /2D
e Convergence? - sparsity : )
o . e Sequence classification
e Generalization? - transpose constraint \ )




Generalization




Generalization (1/3)

Polynomial d=1

From (Bottou, 2010)
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Generalization (2/3)

Polynomial d=3

From (Bottou, 2010)
5



Generalization (3/3)

Polynomial d=20

From (Bottou, 2010)
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Generalization: VC dim (1/2)

@ Bound the difference train-test error
given ‘“‘complexity’” measure of class of functions

@ h is the Vapnik-Chervonenkis dimension
o L. training examples
o With probability 1 —n:

h(log(2L/h) + 1) — log(n/4)

testerr < trainerr + \/ (1974)

L

Bound on the
Expected Risk

Confidence
Interval

Empirical Risk

L | h



Generalization: VC dim (2/2)

o VC dim of a set of functions: maximum number of points L that can be
separated into two different classes in all the oL wWays

o L J @] @
° o o ]
@] &}

S gl A

From (Burges, 1998)

o VC dim { linear classifiers t — w-x, dim d }: h=d+1

2
o VC dim { linear classifiers with margin > p, dim d }: h < min(%,d>+1
o VVC dim { neural net classifiers with n parameters }: h ~ O(n?)
(Karpinski & Macintyre, 1997)



Gradient Descent Convergence




(Batch) Gradient Descent Convergence (1/3)

e Proofs from (Bottou, 1991)
@ Given a cost function C(w), we perform

t
t+1 _ ’lUt . )\t ac(w )
ow

@ Assume we have a single minimum w* and

w

Ve inf  (w—w") 9C(w)

> 0
lw—w*|[2>e Ow

o Define sequence
ht — ( t o w*)Q

oldea: if uy >0 and > ,(uz11 —ut)+ < oo then up converges

@ Consider

t £\ 2
ht-|—1 . ht — _9 )\f(wt o w*) aC(w > 4 )\If ac<w )
ow ow
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(Batch) Gradient Descent Convergence (2/3)

e Consider )
t t
WL — o3t — w2600 ( 90w >>

ow
@ Assume

(8(55010))2 <A+ B(w—-w")? (A B>0)

@ Then we get:
ML pt < AOD?2 - BOO?RE = B — 1+ B R < AN
@ Assume
Z (\)? < o0
t
o T he following sequence converges:

t
1
t_
o H 1+ BV )
o We have pt At — pt=Tat < AN
% S0 S, AN it < 00

x = pt~1ht converges
+ = h! converges

N~ =
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(Batch) Gradient Descent Convergence (3/3)

@ \We have

/ £ 2
]’Lt+1 . ht _ _2)\t<wt . w*) 5’0(w > 4+ )\If ac<w )
ow ow

o h! converges and > ,(\))? < oo, so with previous assumption

t
Z A (w! — w*) 9Cw) < 00
. ow

@ Make sure learning rates do not decrease too quickly:
PIPUSES
t

t
oIn that case (w! — w*)% converges to 0,

and because of initial assumption

wh — w*
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(Stochastic) Gradient Descent Convergence

@ Given a cost function C(w), we perform
,wt+1 _ wt . )\t H(Zt, wt>
such that

OC (w?)

E.H(z, w') = 5
w

(1/2)

@ Same idea than before, with same kind of hypothesis, but this time

ht _ ( t w*)Q
IS @ random variable.
@ Use the same kind of ‘“trick’:

if ug >0 and >, E(0(uryr1 —ug)) < oo then uy converges a.s.

with

1 if E(u!T! — P > 0

o = { 0 otherwise

where P! is the “history” up to time ¢
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(Stochastic) Gradient Descent Convergence (2/2)

@ More general convergence theorems exist (Bottou, 1991)

*x Assume C(w) is three time differentiable

% If several minima, then we can show w! stay ‘“confined” in the same
region when \' decreases.

% Assume C > C,,;, and consider h! = C(w!) — Cyin

@ Assumptions similar than before:

Z)\t:oo and Z()\t)2<oo
t

t
and

E.(H(z, w))? <A+ Buw?> with A,B>0
@ Then we get

OC (w?)
ow

Clw') = C*® a.s. and )> = 0 a.s.
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Applications




Audio: Continuous Speech Recognition (1/2)

State Level

TIME
Fig. 1. baseline TDNN

Word 2 @

Word 1

HPE s Gl oo 0BT

Fig. 3. 2 Word MS-TDNN Fig. 4. Phone Model for ‘p’

Word Level

Sequence of states

From (Haffner, 1992)
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Specialized Training: Non-Linear CRF (1/2)

e Sequence of T frames [z]!
e The network score for class k at the t!" frame is f([z]!, k, t, )
@ A;; transition score to jump from class k£ to class |

class 1
class 2

class 3

class 4

@ Sentence score for a class label path [z‘]lT

T

sl it 0) =" (A, o, + F(= i) 1, 0)

o Conditional likelihood by normalizing w.r.t all possible paths:

~

log p([y] |[=]{, 6) = s([@]], [v]], 6) 1ovgﬁc;ds<[w1?, i1, 6)
I
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Specialized Training: Non-Linear CRF (2/2)

@ Normalization computed with recursive Forward algorithm:

L
51(j) = 10gAdd; |61-1(3) + Ai j + folj 21 )]

Termination:

~

logadd s([z]], [j]], @) = logAdd; d7(i)
w7

o Simply backpropagate through this recursion with chain rule
e Non-linear CRFs: Graph Transformer Networks (Bottou et al., 1997)
o Compared to CRFs, we train features (network parameters 6 and

transitions scores Aj;)

o Inference: Viterbi algorithm (replace logAdd by max)
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Audio: Continuous Speech Recognition (2/2)

Alignement
temporel par

programmation
dynamique
Banc de 16 filires 8

parole codée

25

95 47

30

P(st | Ot-2, Ot-1, Ot)

v avement
pa

TOt-2TOt-1T Ot . ore parement
( WWWMW 8 Fig 10.2 - Mise en commun des parties identiques. Aux transitions en gras sont associés les

mots “pavement” et “parement” .

From (Bottou, 1991)
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Image: Digit Recognition (1/2)

C3:1. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16 @5x5
6@28x28
S2:f. maps

32x32
6@14x14

|
Full comlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Err. rate (%)
Gaussian SVM 1.4
1000 HU NN (MSE) 4.5
800 HU NN 1.6
CNN 0.8
CNN + distortions 0.4
6 layers NN 4 distortions 0.4

NOohwxr Il
N~PFANN oy -\ &
PRREANNID ~=J e
e v o NS0\
SLOPrANDI N
6N WY &~~~ &
SR o WO XA
NONIONOC LV —

Fig. 4. Size-normalized examples from the MNIST database.
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(2/2)

5
o
5
o
v
=t

vw,@f

C1 S2 C3 sS4 C5

SRR

Digit Recognition

Image:

S

(Lecun et al., 1998)
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Image: Check Reader

Viterbi Penalty

class
labal
chiaracter reacagrizer
\ panally lor each class
FIECE OF THE - _
, z : - IMTERPRETATIOMN
e g:?hrm GRAFPH —
Git
—— - ——
Iterbi
T vit

Transfaormer

Interpretation
Graph —
W / Charactar Character
e Recognizer Racagnizar
14 4 |
Recognition / [
Transformer I II 'I
| |
[ | L1
B TR I
Segmentation 0.1 A Esaaljgﬂr:'?:r:?
Graph PIECE OF THE 0.5 mage
i SEGMENTATION \ mag
GRAPH

penally given by
the sagmentor

(Lecun et al., 1998)
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Image: Face Detection

C1: feature maps
8@28x28

C3: f. maps
Input 20@10x10
32)(32 8‘1 f maps 84 f mapS

8@14x14 20@5x5

Convolutions

Subsampling

Convolutions

Low dimensional space

Face Manifold
parameterized by pose

Subsampling

Train e— Mapping: G

O A

(1/2)

C5: 120

Output: 9

Full

connection
Convolutions

(Osadchy et al., 2007)
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Image: Face Detection (2/2)
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Image: O0Object Recognition

5 4 & 1 % £ & & A

4

& s X A F

B

5 =< N K
% vEm R X
T RSN

Classifi cation

| exp# | Classifier | Input | Dataset | Test Error |
1.0 Linear raw 2x96x96 | norm-unif 30.2%
1.1 K-NN (K=1) | raw 2x96x96 | norm-unif 18.4 %
12 K-NN (K=1) PCA 95 norm-unif 16.6%
1.3 SVM Gauss raw 2x96x96 | norm-unif N.C.
14 SVM Gauss raw 1x48x48 | norm-unif 13.9%
15 SVM Gauss raw 1x32x32 | norm-unif 12.6%
1.6 SVM Gauss PCA 95 norm-unif 13.3%
1.7 Conv Net 80 | raw 2x96x96 | norm-unif 6.6%
1.8 Conv Net 100 | raw 2x96x96 | norm-unif 6.8%
20 Linear raw 2x96x96 | jitt-unif 30.6%
2.1 Conv Net 100 | raw 2x96x96 | jitt-unif 7.1%

| Detection/Segmentation/Recognition |

[ exp# | Classifier | Input | Dataset [ Test Error |
5.1 Conv Net 100 | raw 2x96x96 Jitt-text 10.6%
6.0 Conv Net 100 | raw 2x96x96 | jitt-clutt 16.7%
6.2 Conv Net 100 | raw 1x96x96 | jitt-clutt 39.9%

(LeCun et al., 2004)
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Text: Natural Language Processing (Tasks)

o Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)

e Chunking (CHK): syntactic constituents (noun phrase, verb phrase...)
e Name Entity Recognition (NER): person/company/location...

e Semantic Role Labeling (SRL): semantic role

[John] grgo [atelrpr [the apple] 4pg1 [in the garden] qrgr—roc

e Parsing (PSG): /
NP /\NP
hA N
e

T on the mat

@ Tagging tasks (BIOES tagging scheme):

The black cat sat on the mat
B-NP I-NP E-NP S-VP S-PP B-NP E-NP O
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Standard NLP Benchmarks

POS (Toutanova, 2003) Various combinations of surrounding

Chunking (Sha, 2003)

NER (Ando, 2005)

SRL (Koomen, 2005)

words & tags, various caps, digit, dash,

various prefixes & suffixes
Dependency Network

surrounding words, POS tags
Conditional Random Field (CRF)

Surrounding words, POS, several suffixes
& prefixes, surrounding tags, bigrams,
previously assigned tags to words,

unlabeled data
Viterbi decoding at test

6 parse trees, pruning heuristics, POS,
voice, phrase type, head words, subparts

of the trees, ...
Argument identification, argument

classification, integer linear programming

1/2
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Standard NLP Benchmarks 2/2

PCFG
A — B C

Parsing
(Collins, 1999)
(Charniak, 2000)

Parsing
(Charniak & Johnson,
2005 & 2006)

Parsing

(Finkel et al, 2008)
(Petrov & Kilein, 2008)
(Carreras & al, 2008

Lexicalized Probabilistic Context-Free
Grammar (PCFG), POS, head words,
chart parser, deleted interpolation, ... 30
pages of details in (Bikel, 2004)
Re-ranking over the above, using lots of
ad-hoc features

PCFG, dependency features
CRF or similar
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Words into Vectors

a word
The cat sat on the mat

index in a dictionary
(w1, wo, w3, wq, W5, We)

binary code ~ dictionary size

T
’U}H(0,0, 1 7070) :(1.:w>T

at index w

word embedding
M ~ feature size x dictionary size
M X (1.—y) = Moy
lookup-table operation

sentence embedding
M % (L - Lmg) = (Mew; -+ Mo )

Convolution (kernel size 1)
Applicable to any discrete feature (words, caps, stems...)
See (Bengio et al, 2001)
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Window Approach

How to tag “in” in the sentence
“The Visigoths settled in southern Gaul’?

Visigoths

settled \

111

southern
Gaul W' e

Word Higher-Level Tag

Window Representation Representation Scorer
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Window Approach (extra features)

How to tag “in” in the sentence
“The Visigoths settled in southern Gaul”’?

Visigoths Wl e
NNPS Wwhre
settled
VBD WP e
in (Wi . O O O]
IN Whire '
southern
JJ Whr e
Gaul Whv e
NNP Wipre
, Word & POS Higher-Level Tag
Window

Representation Representation Scorer



Sentence Approach

How to tag “in” in the sentence
“The Visigoths settled in southern Gaul’?

The (Wiw o) W?2e
-3 Whde
Visigoths whv e W2 e
_2 Wl,d °
settled ——— (W > o W?2e
_1 Wl,d °
in (Wi W2e 4 We
0 whde @q,
southern wWh e W?2e
1 Wl,d °
Gaul (Wi W?2e
9 — /
Word € Dist. Local Higher-Level Tag
Sentence

Representation Representation Representation Scorer
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Max Over Time

For each 7, what is the chosen t 7
maxy [ X|; , Vi

)

70 70 —
60 | 1] 60
o
50 |- | 50 |-
40 |- _ 40 |-
7

30 | 30 |-
0 N Pl mmmm 0
ﬁ% 9 . )3 S

Do Ch Yl Q. & Q. O . o S
3%, % %6 %0, Y, e © Ho. " 20 % 0, S T % %, %
( Y, YO (S Q T QY Ny e e ‘0,9, Yo 0, e
Oo®?9 % 4 2, O %, % % %, b 4 ¢,
Qo Q 7 o, & AR
oS Q X S



Ranking Language Model

@ Language Model: “is a sentence actually english or not?"
Implicitly captures: * syntax x semantics

e Bengio & Ducharme (2001) Probability of next word given previous

words. Overcomplicated — we do not need probabilities here
@ Entropy criterion largely determined by most frequent phrases
@ Rare legal phrases are no less significant that common phrases
o f() a window approach network

@ Ranking margin cost:

Z Z max (0, 1 — f(s, wi) + f(s, w))

seSweD

S: sentence windows D: dictionary
wy: true middle word in s

f(s, w): network score for sentence s and middle word w

e Stochastic training:

* positive example: random corpus sentence
* negative example: replace middle word by random word
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Training Language Model

@ Two window approach (11) networks (100HU) trained on two corpus:
* LM1: Wikipedia: 631M of words

* LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words

@ Massive dataset: cannot afford classical training-validation scheme
o Like in biology: breed a couple of network lines
@ Breeding decisions according to 1M words validation set

o LM1
* order dictionary words by frequency

* increase dictionary size: 5000, 10,000, 30,000, 50,000, 100,000
* 4 weeks of training
o LM2
* initialized with LM1, dictionary size is 130, 000
* 30,000 additional most frequent Reuters words

* 3 additional weeks of training
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Unsupervised Word Embeddings

france jesus XDbOoxX reddish scratched megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mb/s
germany  christ MSX pinkish  punched bit/s

italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbit/s
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish

sectioned megapixels
silvery  slashed gbit/s
capcom yellowish  ripped amperes

hungary  parvati geforce
switzerland grace

36



Semi-Supervised Benchmark Results

o Initialize word embeddings with LM1 or LM?2

@ Same training procedure

Approach POS CHK  NER | SRL
(PWA)| (F1) | (F1) | (F1)
Benchmark Systems| 97.24 94.29 89.31|77.92
NN+WLL 96.31 89.13 | 79.53 | 54.53
NN+SLL 96.37 190.33|81.47 | 71.24
NN+WLL4+LM1 97.05 1 91.91 | 85.68 | 57.32
NN4+SLL4+LM1 O97.10 93.65 | 87.58 | 74.28
NN+WLL+LM2 97.14 1 92.04 86.96 | 56.97
NN+SLL4+LM2 97.20 1 93.63 | 88.67 | 73.90
@ Huge boost from language models
@ Training set word coverage:
LM1 LM2
POS | 97.86% | 98.83%
CHK |97.93%  98.91%
NER | 95.50% | 98.95%
SRL |97.98% | 98.87%
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Multi-Task Learning

o Joint training

e Good overview in (Caruana, 1997)

Lookup Table Lookup Table

DB E B~ T E

v
Linear v Linear
| RaVaVaVaVaV VY ERNEAVAVAVAVAV, 3 |
TLl 1
hu hu
v
HardTanh v HardTanh
-/ A | -/ s |
v
Linear v Linear
2 2
MGy X0 AH | Mgy XO AN | |

2 _ e "2 _ -
,Lh,u,(tl) = F#tags ”hu,(t?) = F#tags

Task 1 Task 2

<d

<a

<d
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Multi-Task Learning Benchmark Results

Window Approach

Approach

POS
(PWA)

CHK
(F1)

NER
(F1)

Benchmark Systems

97.24

94.29

89.31

NN—+SLL+LM?2

97.20

93.63

38.67

NN+SLL+LM24+MTL

97.22

94.10

38.62

Sentence Approach

Approach

POS
(PWA)

CHK
(F1)

NER
(F1)

SRL
(F1)

Benchmark Systems

97.24

94.29

89.31

77.92

NN4SLL+4-LM?2
NN4+SLL4+LM24+MTL

97.12
97.22

93.37
93.72

88.78
87.99

73.90
74.33
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Cascading Tasks

Increase level of engineering by incorporating common NLP techniques
e Stemming for western languages benefits POS (Ratnaparkhi, 1996)
* Use last two characters as feature (455 different stems)

o Gazetteers are often used for NER (Florian, 2003)

* 8,000 locations, person names, organizations and misc entries
from CoNLL 2003

e POS is a good feature for CHK & NER (Shen, 2005) (Florian, 2003)

* We feed our own POS tags as feature

o CHK is also a common feature for SRL (Koomen, 2005)

* We feed our own CHK tags as feature
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Cascading Tasks Benchmark Results

Approach POS CHK | NER | SRL
(PWA)| (F1) | (F1) | (F1)
Benchmark Systems 97.24 (94.29 89.31 77.92
NN4+SLL4+LM2 97.20 |1 93.63 | 88.67 | 73.90
NN4+SLL4+LM2+4Suffix2 97.29 — — —
NN+SLL4+LM24Gazetteer — — 89.59 —
NN4+SLL4+LM24+POS — 94.32 | 88.67 | 75.39
NN+SLL4+LM24-CHK — — — 74.73
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Parsing

e Parsing is essential to SRL (Punyakanok, 2005) (Pradhan, 2005)
o State-of-the-art SRL systems use several parse trees (up to 6!!)

o We feed our network several levels of Charniak parse tree
provided by CoNLL 2005

NP NP

VP
s | N T
NP PP
level 1 The luxury auto maker last year sold ‘ / N
B-NP I-NP I-NP E-NP B-NP E-NP S-vP . NP
1,214 cars in ‘
B-NP E-NP S-VP
the U.S.
B-NP E-NP
VP
The luxury auto maker last year / \
level 2 © © © © © 0 sold 1,214 cars PP
B-VP I-VP E-VP |
in the U.S.

B-PP I-PP E-PP

‘ VP
level 3 The luxury auto maker last year |

o) o) o) o) O O : .
sold 1,214 cars in the U.S.

B-vP I-VP I-VP I-VP I-VP E-VP
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SRL Benchmark Results With Parsing

Approach SRL
(test set F1)
Benchmark System (six parse trees) 77.92
Benchmark System (top Charniak only) 74.761
NN4+SLL+LM?2 73.90
NN+SLL4+LM24CHK 74.73
NN+4+SLL4+LM2+Charniak (level 1 only) 76.27
NN4+SLL4+LM2+4Charniak (levels 1 & 2) 76.24
NN4+SLL+LM2+4Charniak (levels 1 to 3) 76.62
NN+4+SLL4+LM2+Charniak (levels 1 to 4) 76.50
NN+SLL+LM24+Charniak (levels 1 to 5) 76.98

Jron the validation set
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