Artificial Neural Networks II

Ronan Collobert

ronan@collobert.com

McCulloch and Pitts

- Boolean functions
 - No training

Margin Perceptron

- Linear classification
- Margin: better generalization?

Multi Layer Perceptron

- \bullet Non-linear classification/regression
 - Gradient descent (backprop)
 - Convergence?
 - Generalization?

Perceptron

- Linear classification
- Convergence if separable
 - Generalization?

Kernel Perceptron

• Non-linear classification

Unsupervised Training

- Reconstruction bottleneck:
 - layer size
 - sparsity
 - transpose constraint

Adaline

- Linear classification/regression
 - Delta Rule
 - Convergence?

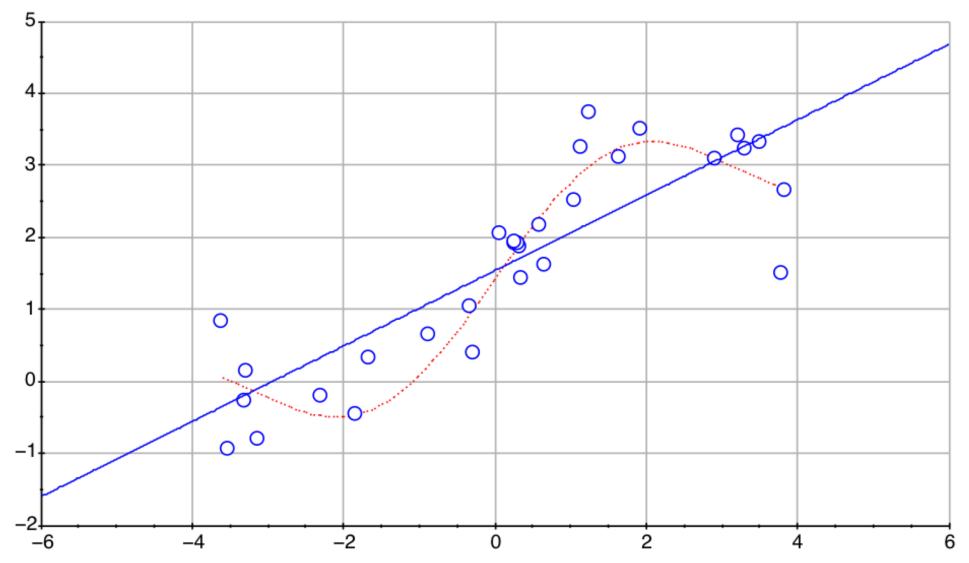
\mathbf{SVM}

- Linear classification
- Non-linear with kernels
- Margin: better generalization?

Specializations • RBF

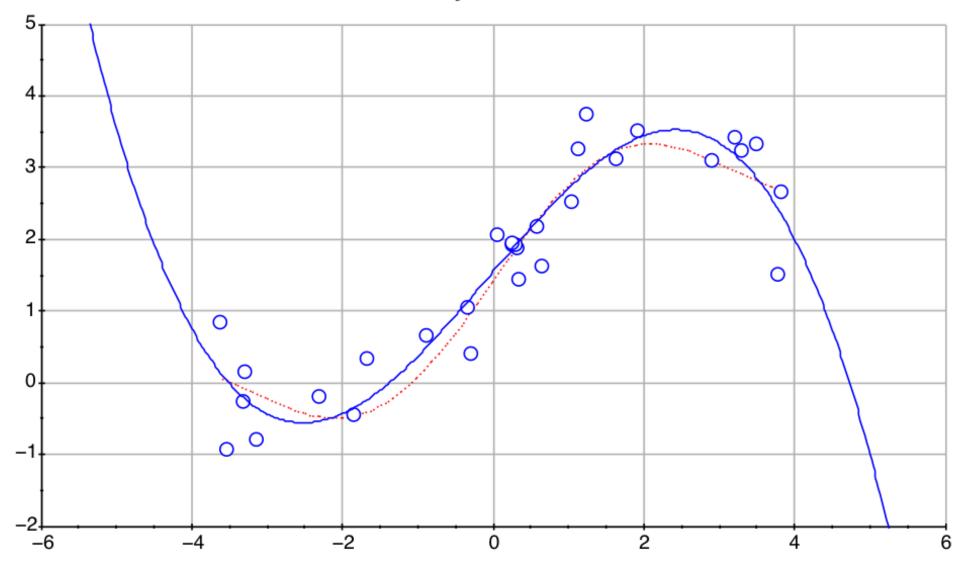
- Convolutions 1D/2D
- Sequence classification

Generalization



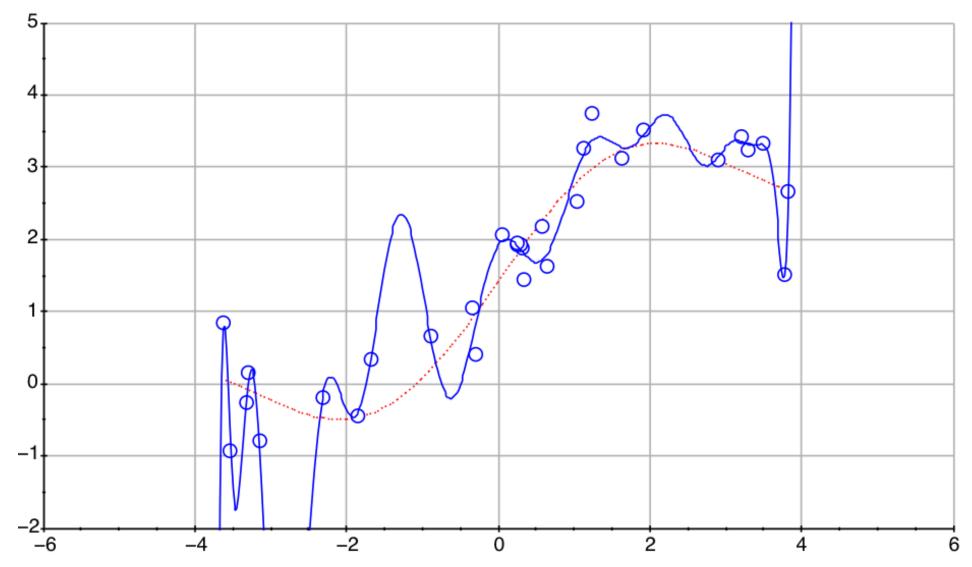
From (Bottou, 2010)

Polynomial d=3



From (Bottou, 2010)

Polynomial d=20

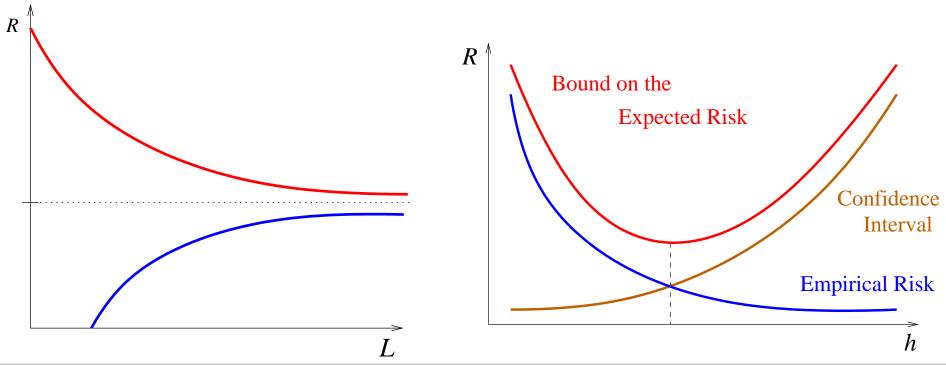


From (Bottou, 2010)

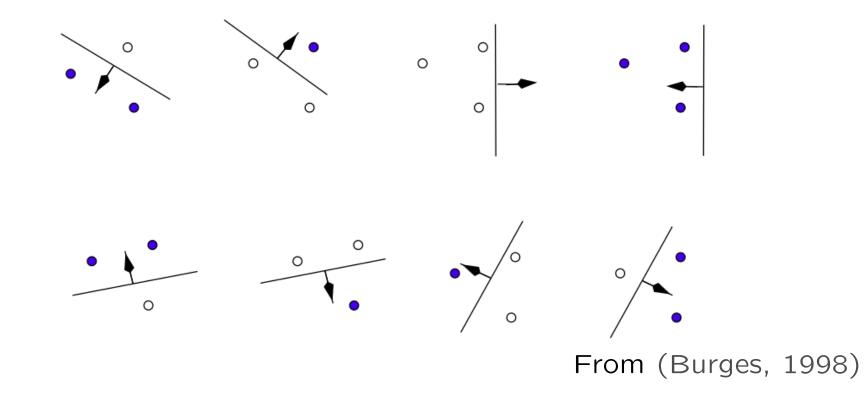
Generalization: VC dim

- Bound the difference train-test error given "complexity" measure of class of functions
- $\bullet\,h$ is the Vapnik-Chervonenkis dimension
- L training examples
- With probability 1η :

testerr
$$\leq$$
 trainerr $+ \sqrt{\frac{h(\log(2L/h) + 1) - \log(\eta/4)}{L}}$ (1974)



• VC dim of a set of functions: maximum number of points L that can be separated into two different classes in all the 2^L ways



• VC dim { linear classifiers $x \mapsto w \cdot x$, dim d }: h = d + 1

• VC dim { linear classifiers with margin $\geq \rho$, dim d }: $h \leq \min(\frac{R^2}{\rho^2}, d) + 1$

• VC dim { neural net classifiers with n parameters }: $h \sim O(n^4)$ (Karpinski & Macintyre, 1997)

(2/2)

Gradient Descent Convergence

(Batch) Gradient Descent Convergence

Proofs from (Bottou, 1991)
Given a cost function C(w), we perform

$$w^{t+1} = w^t - \lambda^t \frac{\partial C(w^t)}{\partial w}$$

• Assume we have a single minimum w^{\star} and

$$\forall \epsilon \quad \inf_{||w-w^{\star}||^2 > \epsilon} (w - w^{\star}) \frac{\partial C(w)}{\partial w} > 0$$

• Define sequence

$$h^t = (w^t - w^\star)^2$$

• Idea: if $u_t \geq 0$ and $\sum_t (u_{t+1} - u_t)_+ < \infty$ then u_t converges

Consider

$$h^{t+1} - h^t = -2\lambda^t (w^t - w^\star) \frac{\partial C(w^t)}{\partial w} + \left(\lambda^t \frac{\partial C(w^t)}{\partial w}\right)^2$$

(1/3)

(Batch) Gradient Descent Convergence

Consider

$$h^{t+1} - h^t = -2\lambda^t (w^t - w^\star) \frac{\partial C(w^t)}{\partial w} + \left(\lambda^t \frac{\partial C(w^t)}{\partial w}\right)^2$$

Assume

$$\left(\frac{\partial C(w)}{\partial w}\right)^2 \le A + B\left(w - w^\star\right)^2 \quad (A, B \ge 0)$$

• Then we get:

$$h^{t+1} - h^t \le A \left(\lambda^t\right)^2 + B\left(\lambda^t\right)^2 h^t \quad \Rightarrow \quad h^{t+1} - \left(1 + B\left(\lambda^t\right)^2\right) h^t \le A \left(\lambda^t\right)^2$$

Assume

$$\sum_t (\lambda^t)^2 < \infty$$

• The following sequence converges:

$$\begin{split} \mu^t &= \prod_{i=1}^t \frac{1}{1 + B(\lambda^i)^2} \\ \bullet \text{ We have } \mu^t h^{t+1} - \mu^{t-1} h^t \leq A (\lambda^t)^2 \mu^t \\ &\star \text{ So } \sum_{t} A (\lambda^t)^2 \mu^t < \infty \\ &\star \Rightarrow \mu^{t-1} h^t \text{ converges} \\ &\star \Rightarrow h^t \text{ converges} \end{split}$$

(2/3)

• We have

$$h^{t+1} - h^t = -2\lambda^t (w^t - w^\star) \frac{\partial C(w^t)}{\partial w} + \left(\lambda^t \frac{\partial C(w^t)}{\partial w}\right)^2$$

 $\bullet \, h^t$ converges and $\sum_t (\lambda^t)^2 < \infty$, so with previous assumption

$$\sum_{t} \lambda^{t} (w^{t} - w^{\star}) \frac{\partial C(w^{t})}{\partial w} < \infty$$

+

• Make sure learning rates do not decrease too quickly:

• In that case
$$(w^t - w^\star) \frac{\partial C(w^t)}{\partial w}$$
 converges to 0, and because of initial assumption

$$w^t \to w^\star$$

(3/3)

(Stochastic) Gradient Descent Convergence

• Given a cost function C(w), we perform

$$w^{t+1} = w^t - \lambda^t H(z^t, w^t)$$

such that

$$\mathbf{E}_z H(z, w^t) = \frac{\partial C(w^t)}{\partial w}$$

Same idea than before, with same kind of hypothesis, but this time

$$h^t = (w^t - w^\star)^2$$

is a random variable.

• Use the same kind of "trick": if $u_t \ge 0$ and $\sum_t \mathbf{E}(\delta_t(u_{t+1} - u_t)) < \infty$ then u_t converges a.s. with

$$\boldsymbol{\delta_t} = \begin{cases} 1 \text{ if } \mathbf{E}(u^{t+1} - u^t | \mathcal{P}^t) > 0\\ 0 \text{ otherwise} \end{cases}$$

where \mathcal{P}^t is the "history" up to time t

$$\mathcal{P}^t = z^0, \, \dots, \, z^{t-1}, \, w^0, \, \dots, \, w^t, \, \lambda^0, \, \dots, \, \lambda^t$$

(1/2)

(Stochastic) Gradient Descent Convergence

• More general convergence theorems exist (Bottou, 1991)

- \star Assume C(w) is three time differentiable
- * If several minima, then we can show w^t stay "confined" in the same region when λ^t decreases.
- * Assume $C \ge C_{min}$ and consider $h^t = C(w^t) C_{min}$
- Assumptions similar than before:

$$\sum_t \lambda^t = \infty \quad \text{and} \quad \sum_t (\lambda^t)^2 < \infty$$

and

$$\mathbf{E}_z(H(z, w))^2 \le A + B w^2$$
 with $A, B \ge 0$

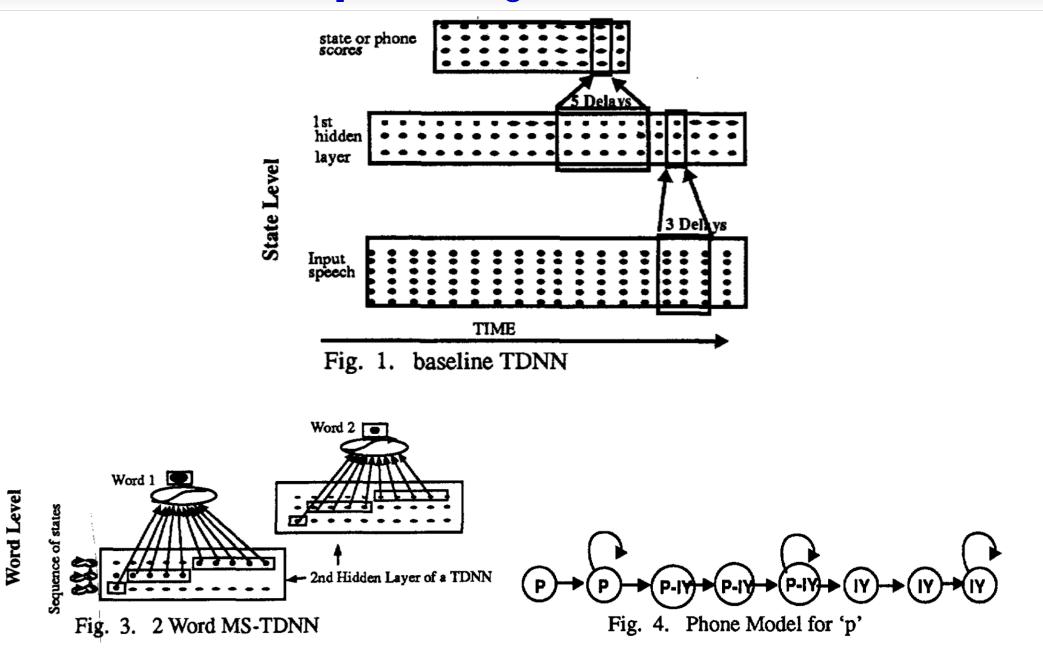
• Then we get

$$C(w^t) \to C^{\infty}$$
 a.s. and $(\frac{\partial C(w^t)}{\partial w})^2 \to 0$ a.s.

(2/2)

Applications

Audio: Continuous Speech Recognition

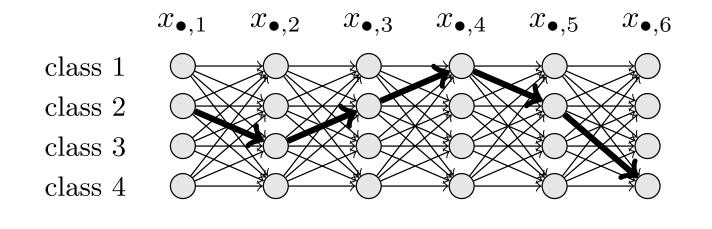


From (Haffner, 1992)

(1/2)

Specialized Training: Non-Linear CRF

- Sequence of T frames $[\boldsymbol{x}]_1^T$
- The network score for class k at the t^{th} frame is $f([\boldsymbol{x}]_1^T, k, t, \boldsymbol{\theta})$
- A_{kl} transition score to jump from class k to class l



• Sentence score for a class label path $[i]_1^T$

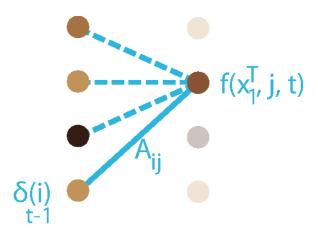
$$s([\boldsymbol{x}]_{1}^{T}, [\boldsymbol{i}]_{1}^{T}, \tilde{\boldsymbol{\theta}}) = \sum_{t=1}^{T} \left(A_{[\boldsymbol{i}]_{t-1}[\boldsymbol{i}]_{t}} + f([\boldsymbol{x}]_{1}^{T}, [\boldsymbol{i}]_{t}, t, \boldsymbol{\theta}) \right)$$

• Conditional likelihood by normalizing w.r.t all possible paths:

$$\log p([\boldsymbol{y}]_1^T \mid [\boldsymbol{x}]_1^T, \, \tilde{\boldsymbol{\theta}}) = s([\boldsymbol{x}]_1^T, \, [\boldsymbol{y}]_1^T, \, \tilde{\boldsymbol{\theta}}) - \operatorname{logadd}_{\forall [j]_1^T} s([\boldsymbol{x}]_1^T, \, [j]_1^T, \, \tilde{\boldsymbol{\theta}})$$

(1/2)

• Normalization computed with recursive Forward algorithm:



$$\delta_t(j) = \log \mathrm{Add}_i \left[\delta_{t-1}(i) + A_{i,j} + f_\theta(j, x_1^T, t) \right]$$
 Fermination:

 $\underset{\forall [j]_1^T}{\text{logadd}} s([\boldsymbol{x}]_1^T, [j]_1^T, \, \tilde{\boldsymbol{\theta}}) = \text{logAdd}_i \, \delta_T(i)$

Simply backpropagate through this recursion with chain rule

Non-linear CRFs: Graph Transformer Networks (Bottou et al., 1997)
 Compared to CRFs, we train features (network parameters θ and transitions scores A_{kl})

• Inference: Viterbi algorithm (replace logAdd by max)

Audio: Continuous Speech Recognition

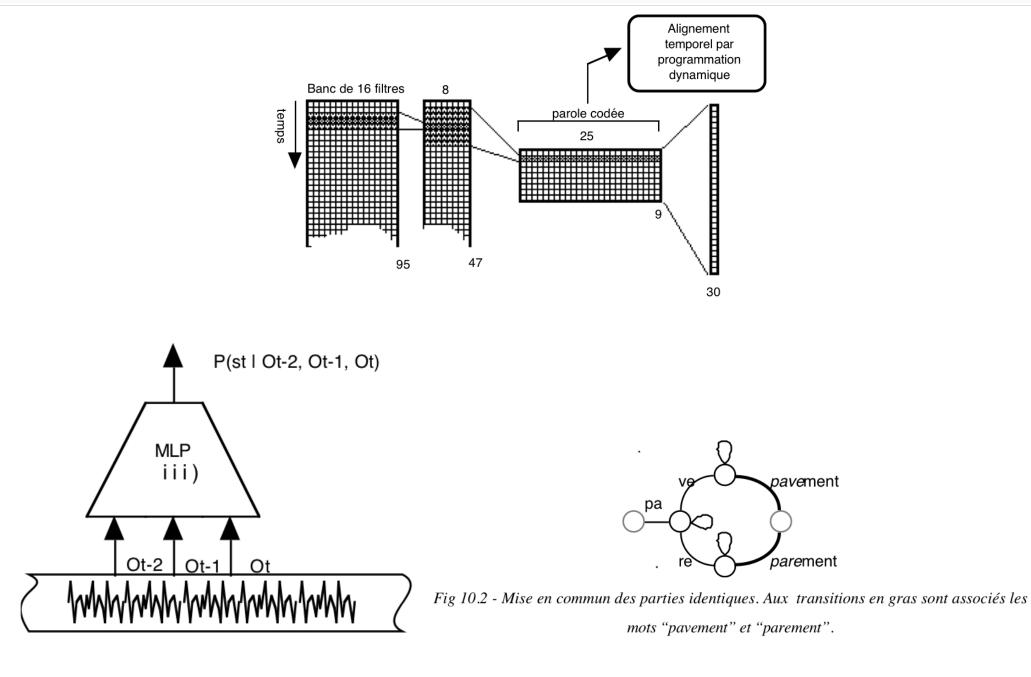


Image: Digit Recognition

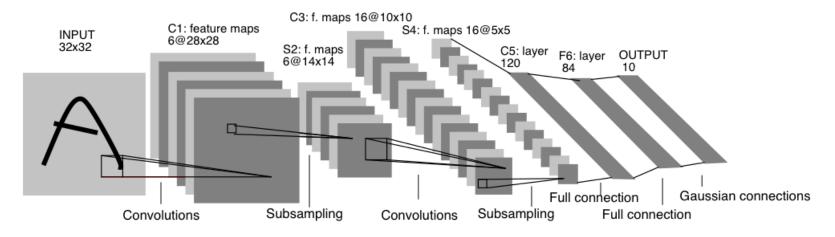
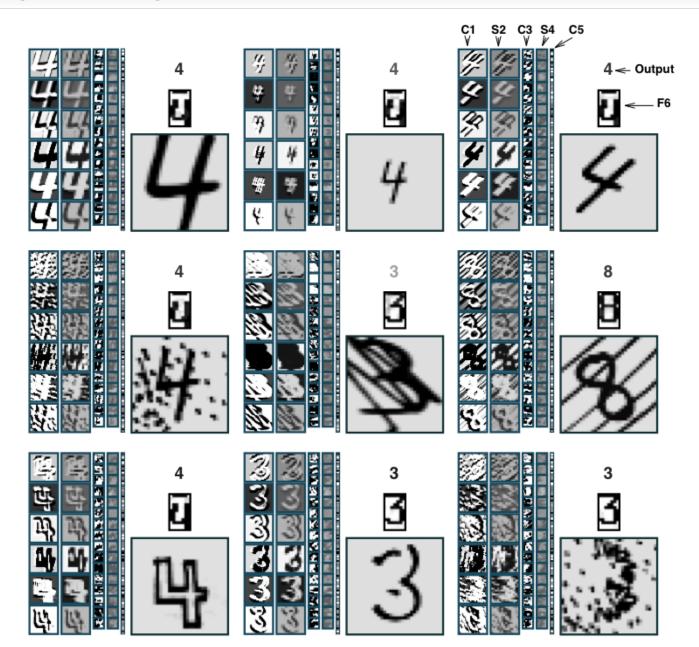


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

3681796691		
6757863485 2179712845		Err. rate (%)
4819018894	Gaussian SVM	1.4
7618641560	1000 HU NN (MSE)	4.5
7592658197	800 HU NN	1.6
2222234480	CNN	0.8
0238073857	CNN + distortions	0.4
0146460243	6 layers NN + distortions	0.4
7128169861		

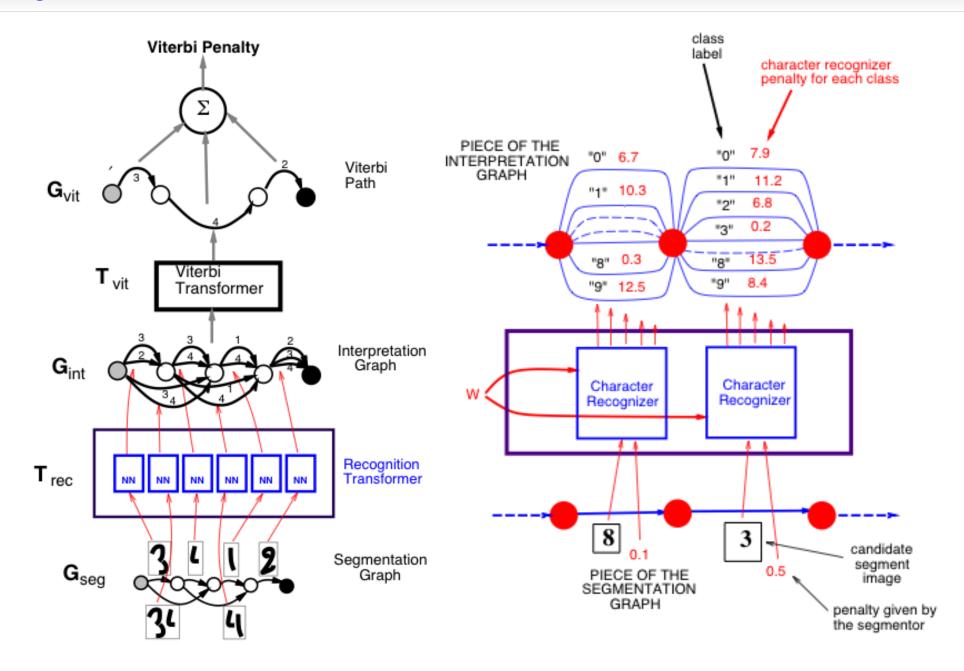
Fig. 4. Size-normalized examples from the MNIST database.

Image: Digit Recognition

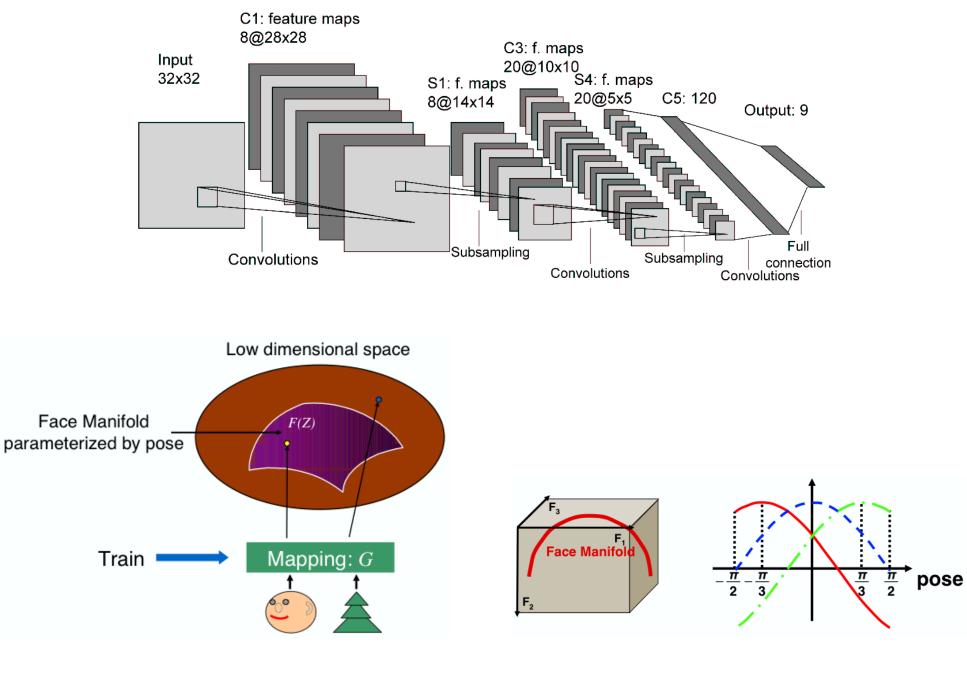


(Lecun et al., 1998)

Image: Check Reader



(Lecun et al., 1998)



(Osadchy et al., 2007)

(2/2)

Image: Object Recognition

todi 1005 Mar 1ª 450

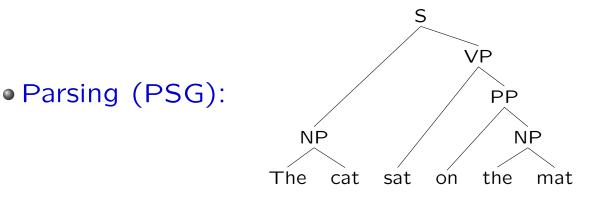
Classifi cation					
exp#	Classifi er	Input	Dataset	Test Error	
1.0	Linear	raw 2x96x96	norm-unif	30.2%	
1.1	K-NN (K=1)	raw 2x96x96	norm-unif	18.4 %	
1.2	K-NN (K=1)	PCA 95	norm-unif	16.6%	
1.3	SVM Gauss	raw 2x96x96	norm-unif	N.C.	
1.4	SVM Gauss	raw 1x48x48	norm-unif	13.9%	
1.5	SVM Gauss	raw 1x32x32	norm-unif	12.6%	
1.6	SVM Gauss	PCA 95	norm-unif	13.3%	
1.7	Conv Net 80	raw 2x96x96	norm-unif	6.6%	
1.8	Conv Net 100	raw 2x96x96	norm-unif	6.8%	
2.0	Linear	raw 2x96x96	jitt-unif	30.6%	
2.1	Conv Net 100	raw 2x96x96	jitt-unif	7.1%	
	Detection/Segmentation/Recognition				
exp#	Classifi er	Input	Dataset	Test Error	
5.1	Conv Net 100	raw 2x96x96	jitt-text	10.6%	
6.0	Conv Net 100	raw 2x96x96	jitt-clutt	16.7%	
6.2	Conv Net 100	raw 1x96x96	jitt-clutt	39.9%	

(LeCun et al., 2004)

Text: Natural Language Processing (Tasks)

- Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)
- Chunking (CHK): syntactic constituents (noun phrase, verb phrase...)
- Name Entity Recognition (NER): person/company/location...
- Semantic Role Labeling (SRL): semantic role

 $[John]_{ARG0}$ [ate]_{REL} [the apple]_{ARG1} [in the garden]_{ARGM-LOC}



• Tagging tasks (BIOES tagging scheme):

The black cat sat on the mat . B-NP I-NP E-NP S-VP S-PP B-NP E-NP O

Standard NLP Benchmarks

POS (Toutanova, 2003) Various combinations of surrounding words & tags, various caps, digit, dash, various prefixes & suffixes Dependency Network

Chunking (Sha, 2003) surrounding words, POS tags Conditional Random Field (CRF)

NER (Ando, 2005) Surrounding words, POS, several suffixes & prefixes, surrounding tags, bigrams, previously assigned tags to words, unlabeled data Viterbi decoding at test

SRL (Koomen, 2005)

6 parse trees, pruning heuristics, POS,
voice, phrase type, head words, subparts
of the trees, ...
Argument identification, argument
classification, integer linear programming

Parsing (Collins, 1999) (Charniak, 2000)

Parsing (Charniak & Johnson, 2005 & 2006)

Parsing (Finkel et al, 2008) (Petrov & Klein, 2008) (Carreras & al, 2008 Lexicalized Probabilistic Context-Free Grammar (PCFG), POS, head words, chart parser, deleted interpolation, ... 30 pages of details in (Bikel, 2004)

Re-ranking over the above, using lots of ad-hoc features

PCFG, dependency features CRF or similar

Words into Vectors

a word = index in a dictionary The cat sat on the mat = $(w_1, w_2, w_3, w_4, w_5, w_6)$

binary code ~ dictionary size

$$w \longleftrightarrow \left(0, \dots 0, \begin{array}{c}1\\ \text{at index } w\end{array}, 0, \dots 0\right)^{\mathrm{T}} = (\mathbf{1}_{\cdot=w})^{\mathrm{T}}$$

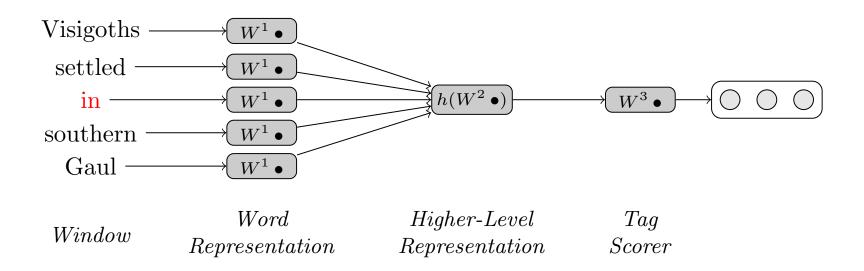
word embedding $M \sim$ feature size \times dictionary size $M \times (\mathbf{1}_{\cdot=w}) = M_{\bullet w}$ lookup-table operation

sentence embedding $M \times (\mathbf{1}_{\cdot=w_1} \cdots \mathbf{1}_{\cdot=w_6}) = (M_{\bullet w_1} \cdots M_{\bullet w_6})$

Convolution (kernel size 1) Applicable to any discrete feature (words, caps, stems...) See (Bengio et al, 2001)

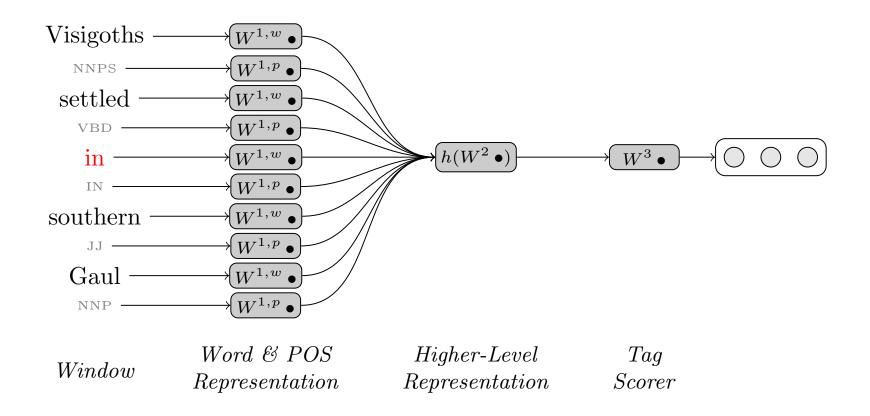
Window Approach

How to tag "in" in the sentence "The Visigoths settled in southern Gaul"?



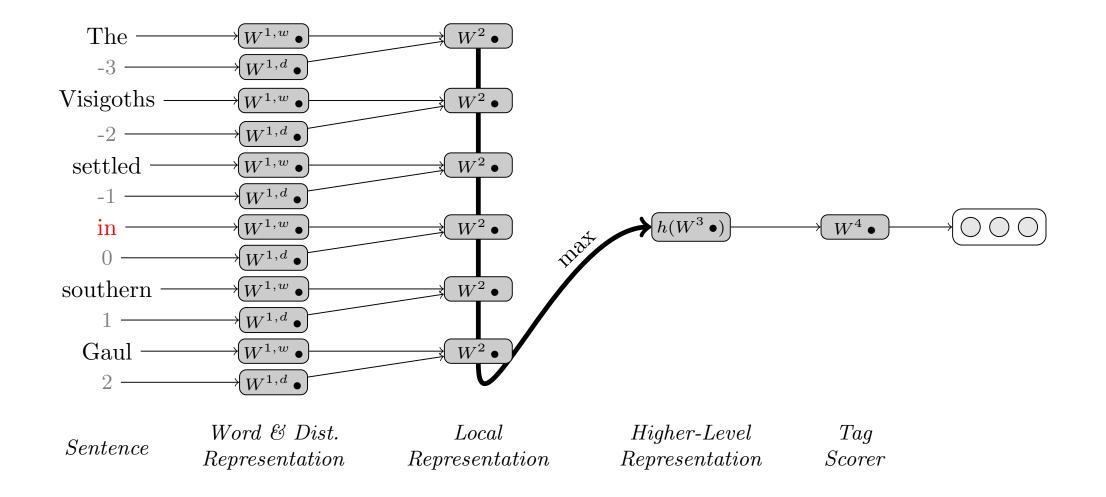
Window Approach (extra features)

How to tag "in" in the sentence "The Visigoths settled in southern Gaul"?

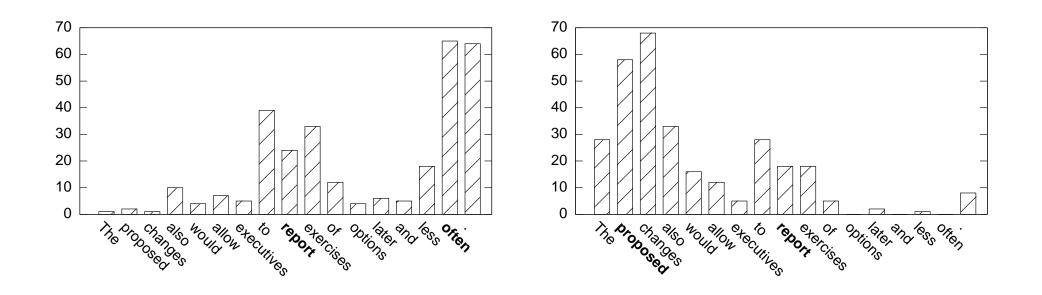


Sentence Approach

How to tag "in" in the sentence "The Visigoths settled in southern Gaul"?



For each i, what is the chosen t ? $\max_t [X]_{i,t} \quad \forall i$



Ranking Language Model

- Language Model: "is a sentence actually english or not?" Implicitly captures: * syntax * semantics
- Bengio & Ducharme (2001) Probability of next word given previous words. Overcomplicated – we do not need probabilities here
- Entropy criterion largely determined by most frequent phrases
- Rare legal phrases are no less significant that common phrases
- ${\, \bullet \,} f()$ a window approach network
- Ranking margin cost:

$$\sum_{s \in \mathcal{S}} \sum_{w \in \mathcal{D}} \max\left(0, 1 - f(s, \boldsymbol{w}_{s}^{\star}) + f(s, w)\right)$$

S: sentence windows \mathcal{D} : dictionary w_s^{\star} : true middle word in s f(s, w): network score for sentence s and middle word w

Stochastic training:

- * positive example: random corpus sentence
- negative example: replace middle word by random word

Training Language Model

- Two window approach (11) networks (100HU) trained on two corpus:
 - * LM1: Wikipedia: 631M of words
 - * LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words
- Massive dataset: cannot afford classical training-validation scheme
- Like in biology: breed a couple of network lines
- Breeding decisions according to 1M words validation set
- •LM1
 - $\star\,$ order dictionary words by frequency
 - \star increase dictionary size: 5000, 10,000, 30,000, 50,000, 100,000
 - \star 4 weeks of training
- LM2
 - \star initialized with LM1, dictionary size is 130,000
 - * **30,000** additional most frequent Reuters words
 - \star 3 additional weeks of training

france	jesus	xbox	reddish	scratched	megabits
454	1973	6909	11724	29869	87025
austria	god	amiga	greenish	nailed	octets
belgium	sati	playstation	bluish	smashed	mb/s
germany	christ	msx	pinkish	punched	bit/s
italy	satan	ipod	purplish	popped	baud
greece	kali	sega	brownish	crimped	carats
sweden	indra	psNUMBER	greyish	scraped	kbit/s
norway	vishnu	hd	grayish	screwed	megahertz
europe	ananda	dreamcast	whitish	sectioned	megapixels
hungary	parvati	geforce	silvery	slashed	gbit/s
switzerland	grace	capcom	yellowish	ripped	amperes

Semi-Supervised Benchmark Results

- Initialize word embeddings with LM1 or LM2
- Same training procedure

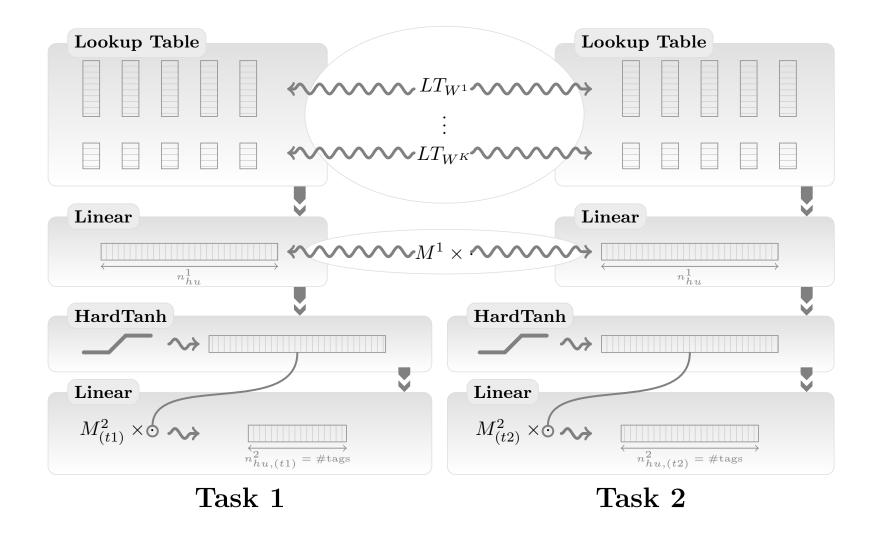
Approach	POS	CHK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	54.53
NN+SLL	96.37	90.33	81.47	71.24
NN+WLL+LM1	97.05	91.91	85.68	57.32
NN+SLL+LM1	97.10	93.65	87.58	74.28
NN+WLL+LM2	97.14	92.04	86.96	56.97
NN+SLL+LM2	97.20	93.63	88.67	73.90

- Huge boost from language models
- Training set word coverage:

	LM1	LM2
POS	97.86%	98.83%
СНК	97.93%	98.91%
NER	95.50%	98.95%
SRL	97.98%	98.87%

• Joint training

• Good overview in (Caruana, 1997)



Window Approach

Approach	POS	CHK	NER
	(PWA)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31
NN+SLL+LM2	97.20	93.63	88.67
NN+SLL+LM2+MTL	97.22	94.10	88.62

Sentence Approach

Approach	POS	CHK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+SLL+LM2	97.12			
NN+SLL+LM2+MTL	97.22	93.72	87.99	74.33

Increase level of engineering by incorporating common NLP techniques

- Stemming for western languages benefits POS (Ratnaparkhi, 1996)
 - * Use last two characters as feature (455 different stems)
- Gazetteers are often used for NER (Florian, 2003)
 - $\star~8,000$ locations, person names, organizations and misc entries from CoNLL 2003
- POS is a good feature for CHK & NER (Shen, 2005) (Florian, 2003)
 - $\star\,$ We feed our own POS tags as feature

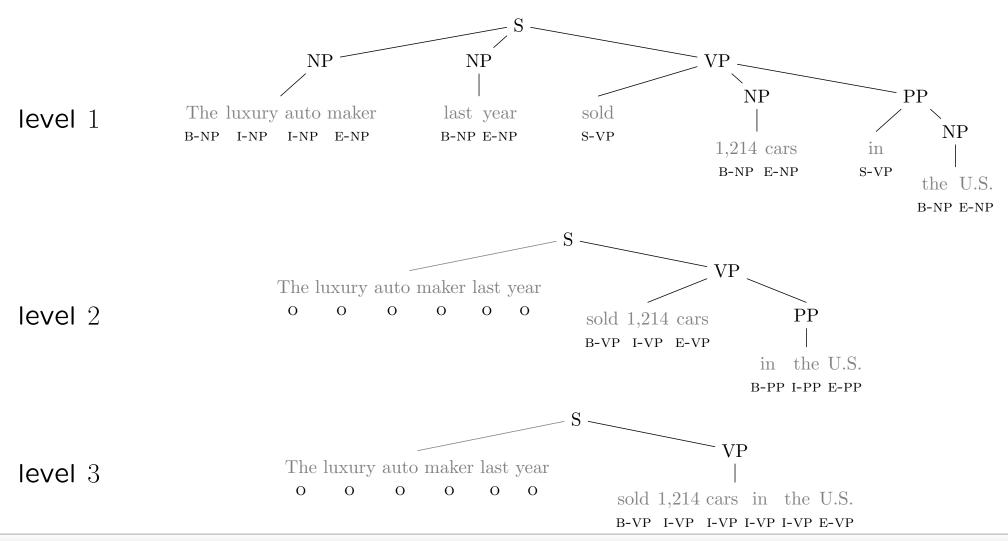
• CHK is also a common feature for SRL (Koomen, 2005)

 $\star\,$ We feed our own CHK tags as feature

Approach	POS	CHK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+SLL+LM2	97.20	93.63	88.67	73.90
NN+SLL+LM2+Suffix2	97.29	_	_	_
NN+SLL+LM2+Gazetteer	—	_	89.59	_
NN+SLL+LM2+POS	_	94.32	88.67	75.39
NN+SLL+LM2+CHK	_	—	—	74.73

Parsing

- Parsing is essential to SRL (Punyakanok, 2005) (Pradhan, 2005)
- State-of-the-art SRL systems use several parse trees (up to 6!!)
- We feed our network several levels of Charniak parse tree provided by CoNLL 2005



Approach	SRL (test set F1)
Bonchmark System (six parso troos)	77.92
Benchmark System (six parse trees)	
Benchmark System (top Charniak only)	74.76^{\dagger}
NN+SLL+LM2	73.90
NN+SLL+LM2+CHK	74.73
NN+SLL+LM2+Charniak (level 1 only)	76.27
NN+SLL+LM2+Charniak (levels $1 \& 2$)	76.24
NN+SLL+LM2+Charniak (levels 1 to 3)	76.62
NN+SLL+LM2+Charniak (levels 1 to 4)	76.50
NN+SLL+LM2+Charniak (levels 1 to 5)	76.98