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The Goal

We want to have a conversation with our computer
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The Goal

We want to have a conversation with our computer

Opinion, sentiment analysis

Business profile

Semantic search

Question answering, call center

Machine Translation

Natural Language Processing + End-To-End Learning
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Natural Language Processing

Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)

Chunking: syntactic constituents (noun phrase, verb phrase...)

Name Entity Recognition (NER): person/company/location...

Semantic Role Labeling (SRL): semantic role

[John]ARG0 [ate]REL [the apple]ARG1 [in the garden]ARGM−LOC
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How Large-Scale Is It By The Way?

Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)

Chunking: syntactic constituents (noun phrase, verb phrase...)

Name Entity Recognition (NER): person/company/location...

Semantic Role Labeling (SRL): semantic role

[John]ARG0 [ate]REL [the apple]ARG1 [in the garden]ARGM−LOC

Labeled data: Wall Street Journal (∼ 1M of words)
Unlabeled data: Infinite
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SVMs with 1M of Labeled Examples

Linear SVMs

? Stochastic Gradient Descent see e.g. Bottou

? SVMPerf Joachims, 2005

? Pegasos Shalev-Shwartz, Singer & Srebro, 2007

? LibLinear Lin, Weng & Keerthi, 2008

It can handle it

Non-linear SVMs

? LaSVM, 8M of examples. 8 days. Loosli, Canu & Bottou, 2007
Unfortunately: 150K support vectors! (a non-noisy task...)

? Non-convex SVMs (Collobert, Weston & Bottou, 2007) can reduce
drastically the number of SVs in a noisy situation

? LaSVM+non-convex?

Even if we could do it, non-linear SVMs are slow at testing time
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SVMs with ∞ Unlabeled Examples

Most Transductive SVM algorithms can handle only toys

Linear Transductive SVMs

? SVMLin, 5M unlabeled examples, 15 minutes.

Sindhwani, Keerthi, 2007

Non-Linear Transductive SVMs

? CCCP-TSVM, 60K unlabeled examples, 42 hours.

Collobert, Weston & Bottou, 2007.

Any online Transductive SVMs?
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Large Scale = Complex Models

In general, if a lot of data is available a complex system is necessary,

because the task is complex...
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Large Scale = Complex Models

In general, if a lot of data is available a complex system is necessary

Two extreme choices to get a complex system

Large Scale Engineering: design a lot of complex features, use a

fast existing linear machine learning algorithm

Large Scale Machine-Learning: use simple features, design a

complex model which will implicitly learn the right features

Solution in the middle?
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NLP: Large Scale Engineering (1/2)

Choose some good hand designed features

Predicate and POS tag of predicate Voice: active or passive (hand-built rules)

Phrase type: adverbial phrase, prepositional phrase, . . . Governing category: Parent node’s phrase type(s)

Head word and POS tag of the head word Position: left or right of verb

Path: traversal from predicate to constituent Predicted named entity class

Word-sense disambiguation of the verb Verb clustering

Length of the target constituent (number of words) NEG feature: whether the verb chunk has a ”not”

Partial Path: lowest common ancestor in path Head word replacement in prepositional phrases

First and last words and POS in constituents Ordinal position from predicate + constituent type

Constituent tree distance Temporal cue words (hand-built rules)

Dynamic class context: previous node labels Constituent relative features: phrase type

Constituent relative features: head word Constituent relative features: head word POS

Constituent relative features: siblings Number of pirates existing in the world. . .

Feed them to a shallow classifier like SVM
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NLP: Large Scale Engineering (2/2)

SRL State-of-the-art: the ASSERT system

Cascade features: e.g. extract POS, construct a parse tree

Extract hand-made features from the parse tree

Feed these features to a shallow classifier like SVM
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NLP: Large Scale Learning (1/2)

Blah Blah Blah

Embedding

Extract Features

Classi�er

Tags

Uni�cation of NLP tasksDeep architecture
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NLP: Large Scale Learning (2/2)

Classi�er

Task 2 Tags

Joint training

Classi�er

Task 2 Tags

Classi�er

Task 1 Tags

Blah Blah Blah

Embedding

Extract Features
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Neural Networks

Stack several layers together

W xMatrix-vector
operation

Non-Linearity

xInput Vector

1
Linear layer

HardTanh

W Matrix-vector
operation 2

Linear layer

yOutput Vector

f(   )

Stochastic gradient descent over a given cost C():

W ←− W − λ
δC(f (x), y)

δW
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Words into Vectors (1/2)

the cat eats the fish

00000000000000000010 00000000000000010000000000000000000000100000000000001000000000010000000000000000

18    4    13    18    16

indices in a
dictionary

binary vectors

fed to some linear layer

monstrous matrix

00000000000000000010

00000000000000010000

00000000000000000010

00000000000010000000

00010000000000000000

W
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Words into Vectors (2/2)

the cat eats the fish

00000000000000000010 00000000000000010000000000000000000000100000000000001000000000010000000000000000

18    4    13    18    16

indices in a
dictionary

binary vectors

fed to some linear layer
with weights shared through time

dictionary size

dictionary size

00000000000000000010

00000000000000010000

00000000000000000010

00000000000010000000

00010000000000000000
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feature vector size
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the cat eats fishthe

feature vectors for each word!
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The Deep Learning Way (1/2)

Input Sentence

the cat sat on the

word of interest

s(1) s(2) s(3) s(4) s(5)

text

indices

Lookup Table

LTw

HardTanh

HardTanh

Linear

Linear

Softmax
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h B
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The Deep Learning Way (2/2)

Input Sentence

the cat sat on the mat

word of interest
verb of interest

s(1) s(2) s(3) s(4) s(5) s(6)
 -1      0      1       2      3     4

text

indices
pos w.rt. word
pos w.r.t. verb  -2     -1     0       1      2     3

Lookup Tables

LTw

LTpw

LTpv

Convolution Layer

Max Over Time ...

...

HardTanh

HardTanh

Linear

Linear

Softmax

Bla
h B

lah
 Bl

ah
Em

be
dd

in
g

Local features
Global features

Tags

Classi�er
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Convolutions

time

kw
x = (x1,x2,x3)

W is osz*(isz*kw)

x1 x2 x3

x

Wx

isz

osz

Extract local features – share

weights through time/space

Used with success in image (Le

Cun, 1989) and speech (Bottou

& Haffner, 1989)

Lookup-table is a special case:

convolution with kernel size of 1

and input ith word

(0, 0, . . . , 1, 0, . . . , 0) 1 at position i

Bengio et al (2001)
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Removing The Time Dimension (1/2)
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Removing The Time Dimension (2/2)
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Results

WSJ for POS, CHUNK (CoNLL 2000) & SRL (CoNLL 2005)
Reuters (CoNLL 2003) for NER

Approach POS CHUNK NER SRL
(% Err) (F1) (F1) (% Err)

Top Systems 2.76 94.20 88.76 13.36
NN 3.15 88.82 81.61 16.40

Top Systems:
Toutanova et al. (2003) for POS
CoNLL Challenge for NER, Sha et al. (2003) for CHUNK
Punyakanok et al. (2005) for SRL

NN:
Window NN approach for POS, CHUNK & NER
Convolutional NN for SRL
Features: Words, capital letters (+ words suffixes for POS)
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1M of Words is not Large Scale Enough!

Dictionary size of WSJ: about 36,000 words. Contains 1M of words.

15% of most frequent words in the dictionary are seen 90% of the time.

Possible improvements:

Word clustering (according to POS for e.g.).

See Collobert & Weston, 2007

Thresholding the number of words in the dictionary

? order the words by frequency

? words above the threshold are mapped to a special word

“UNKNOWN”
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Improving Word Embedding

Rare words are not trained properly

Sentences with similar words should be tagged in the same way:

? The cat sat on the mat

? The feline sat on the mat

Word cat

Lookup Table

wLT

Word feline

Lookup Table

wLT
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Language Model: Think Massive

Language Model: “is a sentence actually english or not?”
Implicitly captures: ? syntax ? semantics

Bengio & Ducharme (2001) Probability of next word given previous
words. Overcomplicated – we do not need probabilities here

English sentence windows: Wikipedia (∼ 631M words)
Non-english sentence windows: middle word randomly replaced

Ranking margin cost:∑
s∈S

∑
w∈D

max (0, 1− f (s, w?
s) + f (s, w))

S: sentence windows D: dictionary
w?

s: true middle word in s
f (s, w): network score for sentence s and middle word w
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Language Model: Embedding

france jesus xbox reddish scratched
454 1973 6909 11724 29869
spain christ playstation yellowish smashed
italy god dreamcast greenish ripped
russia resurrection psNUMBER brownish brushed
poland prayer snes bluish hurled
england yahweh wii creamy grabbed
denmark josephus nes whitish tossed
germany moses nintendo blackish squeezed
portugal sin gamecube silvery blasted
sweden heaven psp greyish tangled
austria salvation amiga paler slashed

Dictionary size: 30,000 words. Even rare words are well embedded.
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Language Model: Results

Approach POS CHUNK NER SRL
(% Err) (F1) (F1) (% Err)

Top Systems 2.76 94.20 88.76 13.36
NN 3.15 88.82 81.61 16.40
NN+LM 2.80 91.87 86.57 15.13
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Structured Output Learning (1/2)

? We consider a observation sequence xT
1 and a label sequence yT

1
? Network outputs score fθ(i, x

T
1 , t) at time t for each label yt = i given xT

1
? Consider a transition score to jump from label i to j equal to ai,j

The
Arg0

Arg1

Arg2

Verb

cat sat on the mat

aij

f(i, x , t)1
T

yt∈
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Structured Output Learning (1/2)

? We consider a observation sequence xT
1 and a label sequence yT

1
? Network outputs score fθ(i, x

T
1 , t) at time t for each label yt = i given xT

1
? Consider a transition score to jump from label i to j equal to ai,j

The
Arg0

Arg1

Arg2

Verb

cat sat on the mat
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Structured Output Learning (1/2)

? We consider a observation sequence xT
1 and a label sequence yT

1
? Network outputs score fθ(i, x

T
1 , t) at time t for each label yt = i given xT

1
? Consider a transition score to jump from label i to j equal to ai,j

The
Arg0

Arg1

Arg2

Verb

cat sat on the mat
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Structured Output Learning (2/2)

Generalization of CRFs: Graph Transformer Networks, LeCun (1998)

? Maximize the difference of forward scores

F (xT
1 , θ)|yT

1 is correct − F (xT
1 , θ)

? Forward score F (xT
1 , θ) recursively defined:

aij

f(j, x , t)1
T

δ(i)
t-1

δt(j) = logAddi

[
δt−1(i) + ai,j + fθ(j, x

T
1 , t)

]
Termination:

F (xT
1 , θ) = logAddi δT (i)

Where logAdd(a + b) = log
(
ea + eb

)
? Inference: Viterbi algorithm (replace logAdd by max)
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Structured Output Learning: Results

Approach POS CHUNK NER SRL
(% Err) (F1) (F1) (% Err)

Top Systems 2.76 94.20 88.76 13.36
NN 3.15 88.82 81.61 16.40
NN+LM 2.80 91.87 86.57 15.13
NN+SOL – 90.08 83.43 –

NN+LM+SOL – 93.78 88.52/87.25† 13.82?

† no gazetteer

? 200x faster than state-of-the-art for SRL
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Structured Output Learning: Results

Approach POS CHUNK NER SRL
(% Err) (F1) (F1) (% Err)

Top Systems 2.76 94.20 88.76 13.36
NN 3.15 88.82 81.61 16.40
NN+LM 2.80 91.87 86.57 15.13
NN+SOL – 90.08 83.43 –

NN+LM+SOL – 93.78 88.52/87.25† 13.82
NN+LM+POS+SOL – 94.18 88.22 –

† no gazetteer
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Multi-Task Learning

Lookup Tables

Task 1

HardTanh

Linear

Linear

Softmax

Lookup Tables

Linear

Task 2

HardTanh

Linear

Softmax

LTw1

Linear

LTw2

Good overview in Caruana (1997)

34



Multi-Task Learning: Results

Approach POS CHUNK NER SRL
(% Err) (F1) (F1) (% Err)

Top Systems 2.76 94.20 88.76 13.36
NN 3.15 88.82 81.61 16.40
NN+LM 2.80 91.87 86.57 15.13
NN+SOL – 90.08 83.43 –
NN+LM+SOL – 93.78 88.52 13.82
NN+LM+POS+SOL – 94.18 88.22 –
NN+LM+MTL 2.80 92.44 86.22 –
NN+LM+SOL+MTL 2.80 94.13 88.10 –
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Summary

We developed a deep neural network architecture for NLP

Advantages

? General to any NLP tagging task
? State-of-the-art performance
? No hand designed features
? Joint training
? Can exploit massive unlabeled data
? Extremely fast: 0.02s for all tags of a sentence

Inconvenients

? Neural networks are a powerful tool: easy to mess up

Early Impacts

? Easy extension to other tasks/languages: Japanese & German
? Fast: developed a semantic search system
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