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Abstract

We propose a fully convolutional sequence-to-sequence en-
coder architecture with a simple and efficient decoder. Our
model improves WER on LibriSpeech while being an order of
magnitude more efficient than a strong RNN baseline. Key to
our approach is a time-depth separable convolution block which
dramatically reduces the number of parameters in the model
while keeping the receptive field large. We also give a sta-
ble and efficient beam search inference procedure which allows
us to effectively integrate a language model. Coupled with a
convolutional language model, our time-depth separable convo-
lution architecture improves by more than 22% relative WER
over the best previously reported sequence-to-sequence results
on the noisy LibriSpeech test set.

Index Terms: speech recognition, sequence-to-sequence, neu-
ral networks

1. Introduction

Sequence-to-sequence models with attention have been used for
speech recognition [[1] since their inception in machine transla-
tion [2, 13, 4]. These models have yielded state-of-the-art re-
sults in some settings [3S]], however; approaches such as CRF
style end-to-end models [6, /7] and more traditional HMM based
models [8] are often superior.

While sequence-to-sequence models sometimes generalize
well in speech recognition, they often come with a big hit to effi-
ciency. The encoder typically consists of several layers of large
bidirectional LSTMs [9, [10]. The decoder also uses a num-
ber of inefficient and sequential techniques. Efficiency is useful
for fast training and evaluation times and is critical to the mas-
sive scale used in the semi-supervised and weakly supervised
regimes [11}112].

In this work we develop a highly efficient sequence-to-
sequence model which gives state-of-the-art results for non
speaker adapted models on both LibriSpeech test sets [13]]. Key
to our approach is a fully convolutional encoder with a time-
depth separable (TDS) block structure. Our TDS convolution
improves in WER over an RNN baseline and due to the paral-
lel nature of the computation is much more efficient. We also
discard slow and sequential techniques previously thought to be
important to the accuracy of these models. These include neural
content attention, location based attention, and scheduled sam-
pling. In turn, we give more efficient alternatives.

Also key to our approach is a highly efficient and stable
beam search inference procedure. Unlike previous work [14],
accuracy does not degrade with very large beam sizes. This
enables us to better leverage the constraint of a convolutional
language model which gives substantial improvements in WER
over a simple n-gram baseline.
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Figure 1: The TDS convolution model architecture. (a) The

sub-blocks of the TDS convolution layer are (b) a 2D convolu-
tion over time followed by (c) a fully connected block.

2. Model

We consider an input utterance X = [X7, ..., Xr] and an out-
put transcription Y = [y, . . ., yu]. The sequence-to-sequence
model encodes X into a hidden representation and then decodes
the hidden representation into a sequence of predictions for each
output token. The encoder is given by

ﬁﬂ = encode(X) (1)

where K = [Ky,...,Kr]are thekeysand V = [V ..., V]
are the values. The decoder is given by

Qu = 9(Yu-1,Qu-1) ®)
Sy = attend(Q, K, V) 3)
P(yu | X,y<u) = h(Su, Qu) )

Here g(-) is an RNN which encodes the previous token and
query vector Q,—1 to produce the next query vector. The at-
tention mechanism attend(-) produces a summary vector Sy,
and h(-) computes a distribution over the output tokens.

2.1. Time-Depth Separable Convolutions

Our proposed time-depth separable (TDS) convolution block
(see Figure |I|) partially decouples the aggregation over time
from the mixing over channels. This allows us to increase the
receptive field of the model with a negligible increase in the
number of parameters. In preliminary experiments we find that
the TDS convolution block generalizes much better than other
deep convolutional architectures [6} [15] and needs fewer pa-
rameters. Another benefit of our block structure is it can be
implemented efficiently using a standard 2D convolution.



The block starts with a layer of 2D convolution which oper-
ates over an input of shape T' X w X ¢ and produces an output of
shape T' X w X ¢ where T is the number of time-steps, w is the
input width and c is the number of input (and output) channels.
The kernels are size & x 1. The total number of parameters in
this layer is kc? which can be made small by keeping ¢ small.
We follow the convolution with a ReLU non-linearity.

We then view the output of the convolution as 7' X 1 X wc
and apply a fully-connected layer, which is a sequence of two
1 x 1 convolutions (i.e. linear layers) with a ReLU non-linearity
in between. We add residual connections [10| [16] and layer
normalization [17] after the convolution and the fully connected
layer. The layer normalization is over all dimensions for a given
example including time.

The TDS architecture has three sub-sampling layers each
with a stride of 2 for a total sub-sampling factor of 8. We also in-
crease the the number of output channels at each sub-sampling
layer since we compress the information in time. For simplic-
ity these layers do not have residual connections and are only
followed by a ReLU and layer normalization.

2.2. Efficient Decoder

The decoder is sequential in nature since to compute the next
output requires the previous prediction. However, at training
time we use teacher forcing—the previous ground truth is used
in place of the previous prediction. In principle, this allows us
to compute all output frames simultaneously. The outputs of
the RNN given by ¢(-) cannot be computed in parallel, how-
ever; unrolling the computation and making a single call to an
efficient CuDNN [18] implementation is much faster than call-
ing U separate kernels. After the following optimizations, the
decoder accounts for less than 10% of the total iteration time.

Techniques such as scheduled sampling [19], input feed-
ing [20] and location-based attention [1] introduce a sequential
dependency in the decoder. We discard these techniques in fa-
vor of approaches which can be computed in parallel. We sim-
ply do not use input feeding and location-based attention as we
find that we can achieve good WERs without them. We replace
scheduled sampling with random sampling (section [2.2.T).

We use an inner-product key-value attention which can be
implemented much more efficiently than a neural attention. For
a single example the attention is given by

1 .7
S =V -softmax | =K Q) ®)
(7
We scale the inner products by the inverse square root of their
hidden dimension d. This improves convergence and helps the
model learn an alignment. However, we do not see a consistent
improvement in generalization [21].

2.2.1. Random Sampling

Scheduled sampling [[19] limits exposure bias by bringing the
training conditions closer to the testing conditions. However,
it introduces a sequential dependency in the decoder, since it
sometimes uses the previous prediction at the next time-step.
Instead, we propose random sampling, where the previous
prediction is replaced with a randomly sampled token [22]. First
we decide with probability Fs to sample a given input token. If
we sample, then choose a new token from a uniform distribu-
tion. This allows us to vectorize the implementation as follows:

1. Sample U random numbers ¢; uniformly from [0, 1].

2. Set R = [r1,...,ru] where r; = I(c; > Py) and Py is
the sampling probability.

3. Sample a vector Z of U tokens. We use a uniform dis-
tribution over the output tokens not including end-of-
sentence (EOS).

4. ConstructY = Ro Z+ (1 —R)oY.

As we show later, random sampling improves WER.

2.3. Soft Window Pre-training

We propose a simple soft attention window pre-training scheme
to enable the training of very deep convolutional encoders.
Compared to prior work [23|], our approach is simple to im-
plement, results in negligible additional computational expense,
and needs very little tuning.

We encourage the model to align the output at uniform in-
tervals along the input by penalizing attention values which are
too far from the desired locations. Let W be a T'x U matrix with
entries Wi; = (i — % 7). The matrix W encodes the (squared)
distance between the ¢-th input and the j-th output assuming the
outputs are spaced at uniform intervals along the input — hence
the scaling factor 7'/U. We apply W to the attention as follows

1 T 1
K Q-5 W) ©
The term o is a hyper-parameter which dampens the effect of
W . The application of W is equivalent to multiplying the nor-
malized attention vector (i.e. after the softmax) by a Gaussian
shaped mask. In that respect, o is simply the standard deviation
of the Gaussian.

We use the window pre-training for the first few epochs and
then switch it off. This is sufficient to enable the model to learn
an alignment and converge. In general o does not need to be
tuned when model hyper-parameters change. An exception is
when the amount of sub-sampling in the encoder changes, o
should change accordingly.

S = V - softmax (

2.4. Regularization

We use three additional forms of regularization to control over-
fitting and improve the generalization of the model.

2.4.1. Dropout

First we apply dropout [24] after each layer in each block of the
encoder. We apply dropout after the non-linearity and prior to
layer normalization. We do not use any dropout in the decoder.

2.4.2. Label Smoothing

We use label smoothing [25] to reduce over-confidence in pre-
dictions. As in machine translation [21]], we find that label
smoothing hurts loss on the dev set but improves WER.

2.4.3. Word Piece Sampling

We use word pieces [26] as outputs following the Unigram Lan-
guage Model approach [27]]. During training, we sample word
piece representations for a given transcription [27], but unlike
prior work, we sample at the word-level instead of the sentence-
level. For each word, with probability 1 — Py, we take the most
likely word piece representation or with probability Py, uni-
formly sample over the top-ten most likely alternatives.

3. Beam Search Decoding

We use an open-vocabulary beam search decoder which opti-
mizes the following objective

log Poy(Y' | X) + alog Pm(Y) + B|Y| ™



The term |Y'| counts the number of tokens in Y. In the above,
« is the LM weight and £ is the token insertion term.

3.1. Stabilizing Beam Search

Sequence-to-sequence beam search decoders are known to be
unstable sometimes exhibiting worse performance with an in-
creasing beam size [14]. We use two techniques to stabilize the
beam search. This allows our model to extract more value from
the integration of an LM, since we can use a large beam size to
effectively search over the space of possible hypotheses.

3.1.1. Hard Attention Limit

We do not allow the beam search to propose any hypotheses
which attend more than ¢max frames away from the previous at-
tention peak. In practice we find that ¢max only needs to be tuned
once for a given data set and can otherwise remain unchanged.

3.1.2. End-of-sentence Threshold

In order to bias the search away from short transcriptions, we
only consider end-of-sentence (EOS) proposals when the score
is greater than a specified factor of the best candidate score

log P,(EOS | y<u) > v -maxlog Pu(c | y<u)  (8)

Like the hard attention limit, we find the parameter « only needs
to be tuned once for a given data set.

3.2. Efficiency

We use a few heuristics to further improve the efficiency of the
beam search. First, we set a beam threshold [6] to prune hy-
potheses in the beam which are below a fixed range from the
best hypothesis so far.

We also apply a threshold when proposing new candidate
tokens to the current set of hypotheses in the beam. Similar to
Equation[8] we require that the proposed token score satisfy

log P.(y | y<u) > maxlog Pu(c | y<u) =1 Q)

Finally, we batch compute the updated set of probabilities
for every candidate in the beam, so only one forward pass is
required at each step. These techniques result in a fast decoding
time even with a deep convolutional LM and a large beam.

4. Experiments

We perform experiments on the full 960-hour LibriSpeech cor-
pus [13]. Our best encoder has two 10-channel, three 14-
channel and six 18-channel TDS blocks. We use three 1D con-
volutions to sub-sample over time, one as the first layer and
one in between each group of TDS blocks. Kernel sizes are
all 21x1. A final linear layer produces the 1024-dimensional
encoder output. The decoder is a one-layer GRU with 512 hid-
den units. Weights are initialized from a uniform distribution
U(—/4/ fin,\/4/ fin), Where fi,, is the fan-in to each unit.

Input features are 80-dimensional mel-scale filter banks
computed every 10-ms with a 25-ms window. We use 10k word
pieces computed from the SentencePiece toolkit [28] as the out-
put token set. All models are trained on 8 V100 GPUs with
a batch size of 16 per GPU. We use synchronous SGD with
a learning rate of 0.05, decayed by a factor of 0.5 every 40
epochs. We clip the gradient norm to 15. The model is pre-
trained for three epochs with the soft window and o = 4. We
use 20% dropout, 5% label smoothing, 1% random sampling
and 1% word piece sampling.

Table 1: A comparison of the TDS conv model to other models
on the Librispeech Dev and Test sets.

Dev WER  Test WER

Model clean other clean other

hybrid, speaker adapted
CAPIO (single) [33] + RNN 312 828 3.51 858
CAPIO (ensemble) [33] + RNN 2.68 7.56 3.19 7.64

CNN ASG [31] + ConvLM 3.16 10.05 344 11.24

RNN S28S [23] 4.87 1437 4.87 1539
RNN S28 [23] + 4-gram 479 1431 4.82 15.30
RNN S28 [23] + LSTM 3.54 11.52 3.82 12.76
TDS conv 5.04 1445 536 15.64
TDS conv + 4-gram 375 10.70 421 11.87
TDS conv + ConvLM 3.01 886 3.28 9.84

We train two word piece LMs on the 800M-word text-only
data set. The first is a 4-gram trained with KenLLM [29] and the
second is a convolutional LM (ConvLM) [30] using the same
model architecture and training strategy as [31]]. We use a beam
size of 80, set tmax = 30, the EOS penalty v = 1.5 and
n = 10. The LM weight and token insertion terms are cross-
validated with each dev set and LM combination. We use the
wav2letter++ framework to train and evaluate our models [32].

4.1. Results

Table[T]compares the TDS model with three other systems. The
CAPIO system is a hybrid HMM-DNN with speaker adapta-
tion [33]]. The other two are end-to-end models, one using the
CRF-style ASG loss [31]] and the other a sequence-to-sequence
model with an RNN encoder [23].

Our proposed model achieves a state-of-the-art for end-to-
end systems of 3.28 WER on test clean and 9.84 WER on test
other. Compared with the RNN-based encoder [23], the TDS
model improves WER by 14.1% on test clean and 22.9% on test
other with nearly a factor of 4 reduction in parameters (136M
vs. 37M). The TDS model benefits more from an external LM.
This could be due to (1) a better loss on the correct transcription
and (2) a more effective beam search.

4.2. Model Variations

Table[Z] shows results from varying the number of TDS blocks,
the number of parameters, the word piece sampling probability
and the amount of random sampling. For each setting we train
three models and report the best and the average WER.

We reduce the number of parameters without changing the
receptive field by reducing the number of channels in each
group of TDS blocks from (10, 14, 18) to (10, 12, 14) or (10,
10, 10). The model is very sensitive to decreasing the number
of parameters. We also examine the effect of varying the num-
ber of TDS blocks without changing the number of parameters
or the receptive field. For 9 TDS blocks we use (14, 16, 20)
channels with £ = 27, and for 12 TDS blocks we use (10, 16,
16) channels with £ = 19. We show that a small amount of
word piece sampling is helpful. With a higher P, the model
sometimes converges poorly, likely due to the variability in the
targets. A small amount of random sampling is also helpful.
Finally, when we remove soft window pre-training, the model
takes much longer to converge and achieves a worse result. The
soft window clearly helps guide the attention early in training.

Figure [2] shows the effect of the receptive field on WER.



Table 2: The sensitivity of our model to architecture and regu-
larization hyper-parameters. The parameter IV is the number of
TDS blocks, Py, is the word piece sampling rate, and P is the
random sampling rate. Missing entries correspond to the value
in the first row. We report the lowest WER over three runs along
with the mean in parentheses using a beam size of 1 and no LM.

params Dev Dev

N (x10%) P P Clean Other
11 36.5 1% 1% | 5.04(5.13) 14.45(14.77)
24.4 5.36(5.45) 15.16 (15.24)
14.9 5.95(5.99) 16.25(16.44)
9 5.18(5.27) 15.34 (15.37)
12 5.10(5.33)  14.99 (15.26)
0% 5.25(5.32) 14.89 (15.00)
2% 5.04 (5.46) 14.88 (15.41)
0% | 5.08(5.24) 15.00(15.21)
5% | 5.11(5.25) 14.65 (14.80)

No soft window pre-training \ 5.55(5.58) 14.99 (15.30)
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Figure 2: The WER as a function of the receptive field. We
vary the kernel size, k € {5,9,13,17,21}, otherwise every
model has ~36.5 million parameters. We report the mean WER
over three runs using a beam size of 1 and no LM.

There is a sharp increase in WER when the size of the receptive
field drops below a threshold. Qualitative analysis shows that
the high WER is often due to catastrophic errors such as loop-
ing and skipping, a common problem for sequence-to-sequence
models [14]. We hypothesize that without a large receptive
field, the encoder keys do not have enough context to disam-
biguate queries from the decoder.

Figure [3] shows how WER changes with the size of the
beam. While most of the gain from including an external LM
comes even at small beam size, we see consistent improvements
up to a beam size of 80, particularly on dev other.

4.3. Efficiency

We compare the TDS conv model to a strong RNN baseline
in terms of training efficiency on LibriSpeech [23]]. The RNN
baseline encoder consists of six bidirectional LSTMs. Both
models have a total sub-sampling factor of 8. Our best TDS
architecture can complete one full epoch over the LibriSpeech
training set in 7 minutes. This is more than 10X faster than our
implementation of the RNN baseline and more than 4x faster
than the RNN baseline encoder but with the efficient decoder
described in Section 2.2

Our beam search runs at an average rate of 0.57 and 0.93
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Figure 3: The WER as a function of beam size for both the
4-gram and the convLM.

seconds-per-sample on dev clean and other with the 4-gram LM
and a beam size of 80. With the ConvLM, times increase to 0.73
and 1.20 seconds-per-sample at the same beam size.

5. Related Work

Our work builds on a large body of work aimed at improving
sequence-to-sequence models with attention for both speech
recognition [3| 14} 23] and other application domains. Fully
convolutional encoders have worked well in machine transla-
tion [[15]]. They have also given state-of-the-art results in speech
recognition [31] with more structured loss functions like the
AutoSegCriterion [6]. However, we are not aware of any com-
petitive results with fully convolutional encoders in sequence-
to-sequence models for speech recognition.

The high-level encoder architecture is similar to the Trans-
former model [21]]; however, we consider convolutions instead
of self-attention. Our architecture is inspired by and quite re-
lated to the lightweight convolution [34]. An important idea
of that work and ours is the separation of the integration over
time from the mixing over channels which improves both accu-
racy and efficiency. Other than the application to speech, some
differences in our encoder architecture are (1) the time-depth
separable convolution can be implemented with a simple 2D
convolution and (2) our models do not use any normalization
over the time dimension of the kernels.

Depth-wise separable convolutions have been used to im-
prove the efficiency and accuracy of computer vision mod-
els [35, [36]. The first layer of the TDS block can be seen as
a grouped 1D convolution with cw channels, a group size of ¢,
and weights tied between groups. Grouped convolutions have
also been used in computer vision to improve efficiency for e.g.
model-parallel training [37]] and classification accuracy [38].

6. Conclusion

We have shown that a fully convolutional encoder and a sim-
ple decoder can give superior results to a strong RNN baseline
while being an order of magnitude more efficient. Key to the
success of the convolutional encoder is a time-depth separable
block structure which allows the model to retain a large recep-
tive field. We also show how to integrate a strong convolutional
LM with a stable and scalable beam search procedure.
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