Deep Learning
for Natural Language Processing

Ronan Collobert Jason Weston
NEC Labs America, Princeton, USA Google, New York, USA

Joint work with Leon Bottou, David Grangier, Bing Bai, Yanjun Qi, Antoine Bordes,
Nicolas Usunier, Koray Kavukcuoglu, Pavel Kuksa, Corinna Cortes and Mehryar Mohri.

Deep Learning
for Natural Language Processing

Ronan Collobert Jason Weston
NEC Labs America, Princeton, USA Google, New York, USA

Disclaimer: the characters and events depicted in this movie are fictitious. Any
similarity to any person living or dead is merely coincidental.

A Brief History Of Machine Learning

As with the history of the world, machine learning has a history of

and
exploration exploitation
(finding new things) (of what you, or someone else, found)

(and sometimes wars because of it!)

In the beginning: discovery of the Perceptron

~ “It's cool, it’s sexy.” (Franky Rosenblatt 1957)

(1)
Q “It's linear. It sucks” (Minsky, Papert 1969)..

. and people believed Minksy, which made them sad ..

Q

T he Quest to Model Nonlinearities

So they tried to make it nonlinear:

e Random projections to induce
nonlinearities,

e Adding nonlinear features to the
inputs, e.g. products of features,

RIS

e They even thought of Kkernels
(Aizerman, Brav., Roz. 1964).

TtThe
Oiiest

(X)
N

but they were still depressed.... until......

They Discovered Multi-Layered Perceptrons

Ougput

Hidd ea

fﬁeﬁ laef G
1] K

(Backprop - Rumelhart, Hinton & Williams, 1986)

i
Pt

...and they got excited..! éx¢

L T
ooy, RLL L cirmy WY
.:'ff o
.) ‘:.\\

R
\1
,- H
g :
3 H
A ! fin

y 4
S e i)

i, 5 e
o # o o

They were so excited they kept trying

more and more things...

2

L

TR
g
T

st

.

By

I

Hidden Laye

And more and more things...

Cutput Modes

Hidden Modes

Context Nodes

I nput Modes

QP/O'utput layer
{one unit)
Third hidden

layer

Second
hidden layer

Input layer

First hidden
layer

...until people got scared!

Even though they hadn’t reached the complexity of the

only known intelligent thing in the universe (the brain)

Ona is only micrometars wida, The ofhar is bilions of light-years across. One shows naurons in a mousa brain. The other is a simulated
image of the universe. Together they suggest the surpnsingly similar patterns found in vastly ditferent natural phenomena. DAVID CONSTANTINE

Brain Cell

Mark Miller Virgn Coe m
Mark Miller, a doctoral student at Brandeis University, ks researching how panticular types of An international group of astrophysicists used a computer simulation last year to recreate
neurans in the brain are connected to one another, By staining thin slices of a mousa's how the universe grew and evohwad, The simulation image above is a snapshot of the
brain, he can idantify the connections visually. The mage abova shows theea neuron calls prasant universe that featuras a large cluster of galaxias (bright yellow) surroundad by
on the left (two red and ona yellow} and thaeir connections. thousands of stars, galaxies and dark matter {web)

Sowee; Mark Miler. Bangels Universlty; Virgo Consartium for Coasmolagoal SUperoompunar STmalashions; mu: eusioomplesty.com That Mew Yk Tl

..and the universe they were trying to model itself

seemed just as complex,

They decided what they were doing was too complex...

10

So they found something less complex... someone came

up with a new Perceptron network!

SUPPORT-VECTOR NETWORKS CORTES AND VAPNIK

classification

comparison
U= K(xgx)

2 input vector, x

“It's cool. It's sexy” (Vlad Vapnik, 1992)
“Isn't it a linear model?” (Yann LeCun, 1992)

11

Life was Convex

... and life was good.
People published papers about it.
But it didn’t do everything they wanted...

12

Learning Representations

Kernel SV
" e Sutpet
APUT
ihzer la.yef s
: 3)
Learning the kernel = multi-layer again!

Neural nets are an elegant model for learning representations.

13

Multi-tasking: sharing features

Taskl Task?2 Task3 Task4

OCO0OO00000O0

|

Inputs

Non-convex even for linear models! (Ando & Zhang, 2005)
Nevertheless, Neural nets are an elegant model for multi-tasking.

14

Semi-supervised learning: Transductive SVM

classification

comparison
U K(xgx)

2] 2] [2] [sz,

2 input vector, x

The loss was non-convex! (& convex relaxations = slow)
Semi-supervision for Neural nets is no problem, don’t worry.

15

Feature Engineering

classification

support vectors z;
in feature space

input vector in feature space
non-linear transformation
> e o

Z ‘ input vector, x

Multi-layer: 1% layer = human brain = nonconvex!!
The first layers of a neural net use machine learning not human learning,
which is what we're supposed to be doing.

16

Scalability

SVMs are slow, even though books were devoted to making them fast
(Bottou, Chapelle, Descoste, Weston 2007). Problem: too many SVs!

LARGE-SCALE

KERNEL MACHINES
DO NOT EXIST
o5 07 e ww X

ﬂ.r,

ok AV -' B v*‘{

-
.:b *

edited by Léon Bottou, Olivier Chapelle,

Dennis DeCoste, and Jason Weston

.-_.-| '
Rt i

* wlf l % ;"», 2 i\, 'w

Solutions:

e Using stochastic gradient descent
like NNs (Bottou, NIPS 2008)

e Learning which SVs to use -—
non-convex, like a 2-layer NN.

e Using linear SVMs (very popular) —
back to the Perceptron!

17

IDEA! Rebrand “Neural Nets” — “Deep Nets”

©OCO000) hs

REM

©Cooooog ! @OOEOE:@ h;

REM

©O00000 # ©OTO000) # @DDPODQ hr
o s a
©O00000) * ©OOOCO0) ©OCO000)
(a) Train RBM (b) Train RBM (c¢) Train RBM for h*
for x for h' and y

(and add some semi-supervision to improve their performance)

~ “It's cooll” (Geoff Hinton, this morning after breakfast)

7 “it's sexy!” (Yann L. and Yoshua B., just before lunch)

“Haven't we been here before?” (Everyone else, 2009)

;.j'r, 1 ’-:“ “n:‘!..
§ \Y

cedted enough to come to this tutorial!

18

But seriously, putting it all together:

e NNNs are flexible:

— Different module (layers), losses, regularizers, . ..

— Multi-tasking
— Semi-supervised learning

— Learning hidden representations

e NNNs are scalable

The ideal tool for NLP!

All hail NNs!

19

This Talk: The Big Picture

T he Goal:

e \We want to have a conversation with our computer
(not easy)

e Convert a piece of English into a computer-friendly data structure
— find hidden representations

e Use NLP tasks to measure if the computer “understands”

Learn NLP from ‘“scratch”
(i.e. minimal feature engineering)

The Plan:

Part I Brainwashing: Neural Networks are Awesome!

Part II Labeling: Hidden Representations for Tagging

Part III Retrieval: Hidden Representations for Semantic Search
Part IV Situated Learning: Hidden Representations for Grounding

20

Part II
NLP Labeling

Ronan Collobert Jason Weston

ronan@collobert.com jaseweston@gmail.com

Léon Bottou, Koray Kavukcuoglu, Pavel Kuksa

NEC Laboratories America, Google Labs

Natural Language Processing Tasks

o Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)
e Chunking (CHUNK): syntactic constituents (noun phrase, verb phrase...)
e Name Entity Recognition (NER): person/company/location...

e Semantic Role Labeling (SRL): semantic role

[John] arco [atelrpr [the apple] gzrag1 [in the garden] sray—roc

NLP Benchmarks

o Datasets:

x» POS, CHUNK, SRL: WSJ (=~ up to 1M labeled words)

* NER: Reuters (=~ 200K labeled words)

System Accuracy
Shen, 2007 97.33%
Toutanova, 2003 97.24%
Gimenez, 2004 97.16%

(a) POS: As in (Toutanova, 2003)

System F1

Ando, 2005 89.31%
Florian, 2003 88.76%
Kudoh, 2001 88.31%

(c) NER: CoNLL 2003

@ We chose as benchmark systems:
* Well-established systems

* Systems avoiding external labeled data

o Notes:

* Ando, 2005 uses external unlabeled data

System F1

Shen, 2005 95.23%
Sha, 2003 94.29%
Kudoh, 2001 93.91%

(b) CHUNK: CoNLL 2000
System F1

Koomen, 2005 77.92%
Pradhan, 2005 77.30%
Haghighi, 2005 77.04%

(d) SRL: CoNLL 2005

* Koomen, 2005 uses 4 parse trees not provided by the challenge

Complex Systems

@ Two extreme choices to get a complex system

* Large Scale Engineering: design a lot of complex features, use a fast
existing linear machine learning algorithm

Complex Systems

@ Two extreme choices to get a complex system

* Large Scale Engineering: design a lot of complex features, use a fast
existing linear machine learning algorithm

* Large Scale Machine Learning: use simple features, design a complex
model which will implicitly learn the right features

NLP: Large Scale Engineering

(1/2)

@ Choose some good hand-crafted features

Predicate and POS tag of predicate

Phrase type: adverbial phrase, prepositional phrase, ...

Head word and POS tag of the head word

Path: traversal from predicate to constituent
Word-sense disambiguation of the verb

Length of the target constituent (number of words)
Partial Path: lowest common ancestor in path

First and last words and POS in constituents
Constituent tree distance

Dynamic class context: previous node labels
Constituent relative features: head word

Constituent relative features: siblings

Voice: active or passive (hand-built rules)
Governing category: Parent node's phrase type(s)
Position: left or right of verb

Predicted named entity class

Verb clustering

NEG feature: whether the verb chunk has a " not”
Head word replacement in prepositional phrases
Ordinal position from predicate + constituent type
Temporal cue words (hand-built rules)
Constituent relative features: phrase type
Constituent relative features: head word POS

Number of pirates existing in the world. ..

@ Feed them to a shallow classifier like SVM

NLP: Large Scale Engineering

@ Cascade features: e.g. extract POS, construct a parse tree

S
///\
NP VP
/\
PI|{P VBZ NP
I| (2 operla,tes N?///\[JP
ARGOpredicate |

NNS mostly in lTowa and Nebraska
ARGM — LOC

stores

ARG1

o Extract hand-made features from the parse tree
o Feed these features to a shallow classifier like SVM

(2/2)

NLP: Large Scale Machine Learning

Goals

@ Task-specific engineering limits NLP scope
@ Can we find unified hidden representations?
o Can we build unified NLP architecture?

Means

e Start from scratch: forget (most of) NLP knowledge
@ Compare against classical NLP benchmarks
o Our dogma: avoid task-specific engineering

T he Networks

Neural Networks

@ Stack several layers together

Input Vector X
Matrix-v r [A
at ?Cto W x Linear layer
operation \ ! J
4 l)
Non-Linearity _/_ HardTanh
\ J
Ma'CFIX'V.ECtOr W e Linear layer
operation 2

5

Output Vector

o Increasing level of abstraction at each layer
@ Requires simpler features than “shallow” classifiers
o The "weights” W, are trained by gradient descent

@ How can we feed words?

10

Words Iinto Vectors

Idea
@ Words are embed in a vector space

o Embeddings are trained

Implementation
@ A word w is an index in a dictionary D € N

e Use a lookup-table (W ~ feature size x dictionary size)

Remarks
e Applicable to any discrete feature (words, caps, stems...)

@ See (Bengio et al, 2001)

11

Words Iinto Vectors

Idea
@ Words are embed in a vector space

o Embeddings are t I’a | n ed

Implementation
@ A word w is an index in a dictionary D € N

o Use a lookup-table (W ~ feature size x dictionary size)

Remarks
e Applicable to any discrete feature (words, caps, stems...)

e See (Bengio et al, 2001)

12

wWwindow Approach

Input Window

Text cat sat on the mat
Feature 1 w% w% w]l\r
: @ Tags one word at the time
Feature K wf{ wf wﬁ
! o Feed a fixed-size window of text
Lookup Table ————
P around each word to tag
LTwl N~
— — = — — |d
: - e Works fine for most tasks
LTywx AN~

— concat e How do deal with long-range

Linear v)
f dependencies?
M xO AN~ | |

P E.g. in SRL, the verb of

HardTanh interest might be outside
- N | the window!

Linear

M? x[\/—) | |

13

Sentence Approach (1/2)

@ Feed the whole sentence to the network
@ Tag one word at the time: add extra position features

@ Convolutions to handle variable-length inputs
time

DDDDHDM

See (Bottou, 1989)
or (LeCun, 1989).

@ Produces local features with higher level of abstraction

@ Max over time to capture most relevant features
""" """ """ """ """""""""""" H Outputs a fixed-sized feature
Max
__ vector

14

Sentence Approach

Input Sentence

Text
Feature 1

Feature K

Lookup Table

The cat sat on the mat

1 1 1
;U wy wy ... Wi
IS
o
=5 K K K
S Wy wy ... Wy

bugppod

o EEHEEH

LTWKWDDDDDDDD

Convolution

Mlx

s
v/v i Y
........
2

Max Over Time
v -
max(-) AAS [FHTTIITITIIIII]
”,7’1 z
Linear .--=7 T
M? x6 "N\~
HardTanh
-/ "N~
Linear .-=="" 77" Tt ttiteeeeeei e
M3 x6 "\~
”’:71 - #tag

<a

<4

<4a

<4a

<4a

(2/2)

15

Training
e Given a training set 7

@ Convert network outputs into probabilities

@ Maximize a log-likelihood

0 — > logply|z, 6)
(@, y)eT

e Use stochastic gradient ascent (See Bottou, 1991)

dlog p(y |z, 0) Fixed learning rate. “Tricks":

0 — 0+)\ 20 + Divide learning by “fan-in”
* Initialization according to ‘“fan-in"

e Use chain rule (“back-propagation”) for efficient gradient computation

Network f(-) has L layers
f() y 8logp(y‘m, 9) _ 8logp(y\w, 0) ofi

f=/fro--0ofi 00, of; 00,
Parameters Ologp(y|x, 8) Ologp(y|x, 0) Of
0= 0L, ...,01) dfi-1 dfi dfi-1

@ How to interpret neural networks outputs as probabilities?

16

Word Tag Likelihood (WTL)

e The network has one output f(x, ¢, 8) per tag ¢

o Interpreted as a probability with a softmax over all tags
> ef(x,7,0)

p(z]a:,H) —

o Define the logadd operation

logadd z; = 1og(z e)
!

i
o Log-likelihood for example (x, y)

logp(y |, 8) = f(z, y, 0) —logadd f(z, j, 6)
J

@ How to leverage the sentence structure?

17

Sentence Tag Likelihood (STL)
o The network score for tag k at the ¢ word is f([a:]lT, k,t, 0)

@ A;; transition score to jump from tag k to tag

The cat sat on the mat

Arg0 ® o (]
Argl @———— ®

Arg2 @ \/{l @ @
Verb ® J

e Sentence score for a tag path [i]!

T

slalf, G, 0) =" (A, g, + £l 14t 0)

t=1
o Conditional likelihood by normalizing w.r.t all possible paths:

log p([y){ |[a]{, 8) = s(a]{, [v]{, 6) — 13g[?gds<[wﬁ Ui, 0)
J1

@ How to efficiently compute the normalization?

(1/2)

18

Sentence Tag Likelihood (STL)

® The network score for tag k at the ¢'" word is f([a:]lT, k,t, 0)

@ A;; transition score to jump from tag k£ to tag

The cat sat on the mat

Arg0 _B "~\ _-®

Arg1 o ™ ! \".'/

Arg2 @ @ @

Verb

@ Sentence score for a tag path [z’]lT
T
sl [6) =" (Ap,_ 0, + (@) [l 1. 0)

t=1

o Conditional likelihood by normalizing w.r.t all possible paths:

log p([y]{ |[]{, 8) = s([a]{, [v]{, 6) — k;gﬁc;dsaw]? Ui, 0)
I

@ How to efficiently compute the normalization?

(1/2)

19

Sentence Tag Likelihood (STL) (2/2)

@ Normalization computed with recursive Forward algorithm:

01(j) = 1ogAdd; |6-1(0) + Ai j + fy(j,a])]

Termination:

fd, j,)

logadd s([z]{, [j]1,) = logAdd, d7(i)

6“% w57

t_
o Simply backpropagate through this recursion with chain rule
e Non-linear CRFs: Graph Transformer Networks (Bottou, 1997)
o Compared to CRFs, we train features (network parameters 6 and

transitions scores Akl)

o Inference: Viterbi algorithm (replace logAdd by max)

20

Supervised Benchmark Results

@ Network architectures:

* Window (5) approach for POS, CHUNK & NER (300HU)
*x Convolutional (3) for SRL (300+500HU)

* Word Tag Likelihood (WTL) and Sentence Tag Likelihood (STL)

o Network features: lower case words (size 50), capital letters (size 5)
dictionary size 100,000 words

Approach POS |Chunking NER | SRL

(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 77.92

NN+WTL 96.31 89.13 79.53 | 55.40
NN-+STL 96.37 90.33 381.47 | 70.99

@ STL helps, but... fair performance.

@ Capacity mainly in words features... are we training it right?

21

Supervised Word Embeddings

@ Sentences with similar words should be tagged in the same way:

x [he cat sat on the mat
x T he feline sat on the mat

france jesus XD OoXxX reddish scratched megabits
454 1973 6909 11724 29869 87025
persuade thickets decadent widescreen odd ppa
faw savary divo antica anchieta uddin
blackstock sympathetic verus shabby emigration biologically
giorgi jfKk oxide awe marking kayak
shaheed khwarazm urbina thud heuer mclarens
rumelia stationery epos occupant sambhaji gladwin
planum ilias eglinton revised worshippers centrally
goa'uld gsNUMBER edging leavened ritsuko indonesia
collation operator frg pandionidae lifeless Moneo
bacha W.J. Namsos shirt mahan nilgiris

o About 1M of words in WSJ
o 15% of most frequent words in the dictionary are seen 90% of the time
@ Cannot expect words to be trained properly!

22

Chapter III

Lots Of Unlabeled Data

23

Ranking Language Model

@ Language Model: “is a sentence actually english or not?"
Implicitly captures: * syntax x semantics

e Bengio & Ducharme (2001) Probability of next word given previous

words. Overcomplicated — we do not need probabilities here
@ Entropy criterion largely determined by most frequent phrases
@ Rare legal phrases are no less significant that common phrases
o f() a window approach network

@ Ranking margin cost:

Z Z max (0, 1 — f(s, w}) + f(s, w))

seSweD

S: sentence windows D: dictionary
wy: true middle word in s
f(s, w): network score for sentence s and middle word w

@ Stochastic training:

* positive example: random corpus sentence
* negative example: replace middle word by random word

24

Training Language Model

e Two window approach (11) networks (100HU) trained on two corpus:
* LM1: Wikipedia: 631M of words

* LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words

@ Massive dataset: cannot afford classical training-validation scheme
o Like in biology: breed a couple of network lines
@ Breeding decisions according to 1M words validation set

o LM1
* order dictionary words by frequency

* increase dictionary size: 5000, 10,000, 30,000, 50,000, 100,000
* 4 weeks of training
o LM2
* initialized with LM1, dictionary size is 130, 000
* 30,000 additional most frequent Reuters words

* 3 additional weeks of training

25

Unsupervised Word Embeddings

france jesus XDbOoxX reddish scratched megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mb/s
germany christ MSX pinkish punched bit/s

italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbit/s
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish

sectioned megapixels
silvery slashed gbit/s
capcom yellowish ripped amperes

hungary parvati geforce
switzerland grace

26

Semi-Supervised Benchmark Results
o Initialize word embeddings with LM1 or LM?2

@ Same training procedure

Approach POS CHUNK | NER | SRL
(PWA) (F1) (F1) | (F1)
Benchmark Systems| 97.24 | 94.29 |89.31 77.92
NN+WTL 96.31 89.13 | 79.53 | 55.40
NN4+STL 96.37 90.33 |81.47 | 70.99
NN4+WTL+LM1 97.05 91.91 |85.68|58.18
NN+STL4+LM1 97.10 93.65 |87.58 | 73.84
NN+WTL4+LM2 97.14 92.04 | 86.96 —
NN4+STL4+LM2 97.20 903.63 | 88.67 | 74.15
@ Huge boost from language models
@ Training set word coverage:
LM1 LM?2
POS | 97.86% | 98.83%
CHK|97.93% 98.91%
NER | 95.50% | 98.95%
SRL |97.98% | 98.87%

27

Multi- Task Learning

Multi-Task Learning

@ Joint training

e Good overview in (Caruana, 1997)

Lookup Table

Lookup Table

ANANNNNN LTy iannAANAy

L QVAVAV VAV VYN LS <AVAYAVAVAV A ¢

v v
Linear v Linear v
| | ANANNNN\NN ML x ANNNNANSS l
771 771
“F "hu
v v
HardTanh v HardTanh v
—/ | | -/ "\ |
v v
Linear v Linear v
2 2
M1y XO A» ! Moy XO A | |

_ R 2 . R
(t1) — #tags nhu7(t2) — ale:

Task 1 Task 2

29

Multi-Task Learning Benchmark Results

Approach

POS CHUNK| NER

(PWA) (F1) (F1)

Benchmark Systems | 97.24 | 94.29 |89.31
NN4+STCH+LM2 97.20 03.63 | 88.67
NN4+STCH+LM24+MTL| 97.22 94.10 | 88.62

30

The Temptation

Cascading Tasks

Increase level of engineering by incorporating common NLP techniques

e Stemming for western languages benefits POS (Ratnaparkhi, 1996)

* Use last two characters as feature (455 different stems)

o Gazetteers are often used for NER (Florian, 2003)

* 8,000 locations, person names, organizations and misc entries
from CoNLL 2003

@ POS is a good feature for CHUNK & NER (Shen, 2005) (Florian, 2003)

* We feed our own POS tags as feature

e CHUNK is also a common feature for SRL (Koomen, 2005)
* We feed our own CHUNK tags as feature

32

Cascading Tasks Benchmark Results

Approach POS CHUNK| NER | SRL
(PWA) (F1) (F1)
Benchmark Systems 97.24 | 94.29 89.31|77.92
NN4+STCH+LM2 97.20 03.63 |88.67 74.15
NN4+STCH+LM24Suffix2 97.29 — — —
NN4+STCH+LM24Gazetteer — — 89.59 —
NN4+STCH+LM24POS — 04.32 | 88.67 —
NN4+STCH+LM24+CHUNK — — — 74.72

33

variance

@ Train 10 networks

Approach POS | CHUNK | NER
(PWA) (F1) (F1)
Benchmark Systems 97.24% | 94.29% 89.31%
NN+STCHLM24+POS worst| 97.29% | 93.99% | 89.35%
NN4+STCH+HLM24-POS mean| 97.31% | 94.17% | 89.65%
NN+STCHLM24+POS best | 97.35% | 94.32% | 89.86%

@ Previous experiments:

same seed was used for all networks to reduce variance

34

Parsing

e Parsing is essential to SRL (Punyakanok, 2005) (Pradhan, 2005)
o State-of-the-art SRL systems use several parse trees (up to 6!!)

@ We feed our network several levels of Charniak parse tree
provided by CoNLL 2005

NP NP

VP
s | N T
NP PP
level (The luxury auto maker last year sold ‘ / N
B-NP I-NP I-NP E-NP B-NP E-NP S-vP . NP
1,214 cars in ‘
B-NP E-NP S-VP
the U.S.
B-NP E-NP
VP
The luxury auto maker last year / \
level 1 © © © © © 0 sold 1,214 cars PP

B-VP I-VP E-VP |

in the U.S.
B-PP I-PP E-PP

‘ VP
level 2 The luxury auto maker last year |

o) o) o) o) O O : .
sold 1,214 cars in the U.S.

B-vP I-VP I-VP I-VP I-VP E-VP

35

SRL Benchmark Results With Parsing

Approach SRL
(test set F1)

Benchmark System (six parse trees) 77.92
Benchmark System (top Charniak only) 74.761
NN4+STCH+LM2 74.15
NN4+STCH+HLM24+CHUNK 74.72
NN+STCHLM2+Charniak (level 0 only) 75.62
NN+4+STCHLM2+4Charniak (levels 0 & 1) 75.86
NN4+STC+HLM2+4Charniak (levels 0 to 2) 76.03
NN+4+STCHLM2+Charniak (levels 0 to 3) 75.90
NN+4+STCHLM2+Charniak (levels 0 to 4) 75.66

Jron the validation set

36

Engineering a Sweet Spot

o SENNA: implements our networks in simple C (=~ 2500 lines)

@ Neural networks mainly perform matrix-vector multiplications: use BLAS
o All networks are fed with lower case words (130,000) and caps features
@ POS uses prefixes

@ CHUNK uses POS tags

@ NER uses gazetteer

@ SRL uses level O of parse tree

* We trained a network to predict level 0 (uses POS tags):
92.25% F1 score against 91.94% for Charniak

* We trained a network to predict verbs as in SRL

* Optionaly, we can use POS verbs

37

SENNA Speed

System RAM (Mb) Time (s)
Toutanova, 2003 1100 1065
Shen, 2007 2200 333
SENNA 32 4

(a) POS

System RAM (Mb) | Time (s)
Koomen, 2005 3400 6253
SENNA 124 52

(b) SRL

38

SENNA Demo

o Will be available in January at
http://ml.nec-labs.com/software/senna

o If interested: email ronan@collobert.com

Terminal emacs 109x32

void SENNA_nn_viterbi(int * , float % , float % , float % , int N, int
{

float * , ¥ ;

Nt *x H

T L, Ty 5

/+ misc allocations #*/

delta = SENNA_malloc(sizeof(float), N);
deltap = SENNA_malloc(sizeof(float), N);
phi = SENNA_malloc(sizeof(float), N«T);

/¥ init */
(1=0; 1<N; i++)
deltap[i] = init[i] + emission[i];

/#* recursion */
(t=1; t <T; t++)

{
float * = delta;
for(j = 0; J < N;j j++)

float = =FLT_MAX;

int = 0;

for(i = 0; 1 < N; i++)

{
float z = deltap[i] + transition[i+j#N];
if(z > maxValue)
{

maxValue = z;
maxIndex = 1i;

~uu=:===F1 SENNA_nn. % (165,0) (C/L Abbrev)

39

Conclusion

Achievements
o “All purpose” neural network architecture for NLP tagging

o Limit task-specific engineering
@ Rely on very large unlabeled datasets
@ We do not plan to stop here

Critics
o Why forgetting NLP expertise for neural network training skills?
* NLP goals are not limited to existing NLP task

* EXcessive task-specific engineering is not desirable

@ Why neural networks?
* Scale on massive datasets

* Discover hidden representations
* Most of neural network technology existed in 1997 (Bottou, 1997)

If we had started in 1997 with vintage computers,
training would be near completion today!!

40

Deep Learning
for NLP: Parts 3 & 4

Ronan Collobert Jason Weston
NEC Labs America, Princeton, USA Google, New York, USA

Part 3

‘“Semantic Search”

Learning Hidden Representations for Retrieval

Collaborators: B. Bai, D. Grangier, K. Sadamasa, Y. Qi, C. Cortes, M. Mohri
2

Document Ranking: Our Goal

We want to learn to match a query (text) to a target (text).

" Most supervised ranking methods use hand-coded features.

" Methods like LSI that learn from words are unsupervised.

““In this work we use supervised learning from text only:

=l earn hidden representations of text for learning to rank from words.

" Qutperforms existing methods (on words) like TFIDF, LSI or a
(supervised) margin ranking perceptron baseline.

Basic Bag-o’'-words

Bag-of-words -+ cosine similarity:
N D . . _ -
e Each doc. {d:};'{ CR" is a normalized bag-of-words.
e Similarity with query g is: f(q,d) =q'd
& Doesn’t deal with synonyms: bag vectors can be orthogonal

=7 No machine learning at all

Latent semantic indexing (LSI)

VA
8 /

Learn a linear embedding ¢(d;) = Ud; via a reconstruction objective.
e Rank with: f(¢,d) = ¢'UTUd = ¢(q) o(d) [Y.

co: V&
Uses “synonyms’ : low-dimensional latent “concepts”.

“7 Unsupervised machine learning: useful for goal?

L f(q,d) = q"(U"U + al)d gives better results.
Also, usually normalize this — cosine similarity.

(Polynomial) Supervised Semantic Indexing (SSI)

e Define document-query similarity function: f(¢,d) = w'¢"([¢,d]), where
(Dk(xl, ...,xp) considers all possible k-degree terms:

q)k(l’l,...,iljp):<£U¢1...£Uz'ki1§’i1...ik§D>.

We consider:

¢ [(q,d) = Z%,)jzl Wijqidj = ¢ ' Wd (1)
o 3a.d) = Y71 Winaididy + £(q. d). (2)
5%

e o
v

Supervised machine learning: targeted for goal, uses synonyms

o Too Big/Slow?!

SSI: why is this a good model~?

Classical bag-of-words doesnt work when there are few matching terms:
a=(kitten, vet, nyc)

d=(cat, veterinarian, new, york)

2 YO

e o
A+

Our method qTWd learns that e.g. Kitten and cat are highly related.

sos V&

v

E.g. if ¢ is the index of kitten and j is the index of cat, then W;; > 0
after training.

Usefulnhess of degree 3 model::
Poly degree 2:
Weights for word pairs: e.g. ‘“jagger’ € q & ‘stones” € d.

Poly degree 3:
Weights for word triples: e.g. ‘jagger’” € q & ‘'stones”, ‘“‘gem’ € d.

SSI: Why the Basic Model Sucks

ood Even for degree 2, W is big : 3.4Gb if D = 30000, 14.5Tb if D =2.5M.
b

%) Slow: qTWd computation has mn computations quZ-de-, where ¢ and
d have m and n nonzero terms.

7 Or one computes v = ¢' W once, and then vd for each document.

Classical speed where query has D terms, assuming W is dense — still
slow.

SSI Improved model: Low Rank w

““For degree 2, Constrain W:

W=U'V+1.

U and V are N x D matrices — smaller
““Low dimensional “latent concept” space like LSI (same speed).
““Differences: supervised, asymmetric, learns with I.

e For k=2, replace W with W = (U'V) +I:

frlg,d) = ¢"(UTV +1D)d, = SN, (Uqi(Vd);+q"d.

e For k =3, approximate W, with W, = >, U V;,; Vi

fip(a:d) = X5 (Ua)i(Vd)i(Yd)i + f7pla,)

Neural Network Models for Retrieval

*

Dot Product

1xn
= Output: 1xn f Output: 1xn ., 1_100

(embedding space)

T Input: 1xd eg.d=2.5Mm

(dictionary)

document

1xd 1xd

10

Doc. Embedding for Polynomial Degree 3

1xn] Output: 1xn
Module 2

Linear Map Linear Map 2

dxn dXxn

document Inobut: 1xd
1Xd 1100001101001 010100100 10 10 0010 1010 1 p)

11

SSI: Training

Training Loss

e Ranking loss from preference triplets (¢,d™,d~), “for query q, d* should
appear above d "

o LW;R)= Y max(0,1— fyr(q.d")+ fir(q.d"))
(g, dt.d")ER

Learning Algorithm Stochastic Gradient Descent: Fast & scalable.

Iterate Sample a triplet (¢, d",d™),
Update W « W — A% max(0,1 — fiyr (g, d¥) + fiyr(g, d7)).

12

Prior Work: Summary of learning to Rank

e SVM [Joachims, 2002] and NN ranking methods [Burges, 2005] .
Use hand-coded features: title, body, URL, search rankings,... (don't use words)
(e.g. Burges uses 569 features in all).

e In contrast we use only the words and try to find their hidden representation.

e Several works on optimizing different loss functions (MAP, ROC, NDCG): [Cao,
2008], [Yu, 2007], [Qin, 2006],. ...

e [Grangier & Bengio, '06] used similar methods to basic SSI for retrieving images.

e [Goel, Langord & Strehl, '08] used Hash Kernels (Vowpal Wabbit) for advert
placement.

e Main difference: i) we use low rank & ii) polynomial degree 3 features.

g
~ We could also add features 4+ new loss to our method ..

13

Experimental Comparison

e Wikipedia

— 1,828,645 documents. 24,667,286 links.

— Split into 70% train, 30% test.
e Pick random doc. as query, then rank other docs.
e Docs that are linked to it should be highly ranked.

e TwoO setups:

(i) whole document is used as query;

(ii) 5,10 or 20 words are picked to mimic keyword search.

14

Experiments: Doc-Doc Ranking

‘D = 30000

Algorithm Params | Rank-Loss | MAP P10
TFIDF 0 1.62% 0.3424+0.01 | 0.17040.007
Query Expansion 2 1.62% 0.330 0.160

LLSI 200D 4.79% 0.161 0.101

aLSI 4+ (1 —) TFIDF 200D+1| 1.28% 0.346 0.170
Marg. Rank Perceptron D? 0.41% 0.477 0.212

SSI: poly (k= 2) 400D 0.30% 0.517 0.229

SSI: poly (k= 3) 600D 0.14% 0.539 0.236

NOTE:Best possible P10= 0.31 — on average every query has only about 3 links.

15

Experiments: Doc-Doc Ranking

D =25M
Algorithm Rank-Loss | MAP P10

TFIDF 0.842% 0.432+0.012 0.193

Query Expansion 0.842% 0.432 0.1933

alLSI + (1—a)TFIDF | 0.721% | 0.433 0.193

Hash Kernels 4+ alf 0.322% 0.492 0.215

SSI: poly (k= 2) 0.158% 0.547+0.012 0.239+0.008
SSI: poly (k= 3) 0.099% 0.590+0.012 0.249-+0.008

16

Experiments: Query-Document Ranking

k-keywords based retrieval (D = 30000):

k=5
Algorithm Params Rank MAP P®@10
TFIDF 0 21.6% 0.047 0.023
alLSI + (1 —) TFIDF | 200D+1 | 14.2% 0.049 0.023
SSI: poly (k=2) 400D |4.37% 0.166 0.083

k=10
Algorithm Params Rank MAP PQ@10
TFIDF 0 14.0% 0.083 0.035
alLSI + (1 —a)TFIDF | 200D+1| 9.73% 0.089 0.037
SSI: poly (k=2) 400D |2.91% 0.229 0.100

k=20
Algorithm Params Rank MAP PQ@10
TFIDF 0 0.14% 0.128 0.054
alLSI + (1 —a)TFIDF| 200D+1| 6.36% 0.133 0.059
SSI: poly (k=2) 400D |1.80% 0.302 0.130

17

Experiments: Cross-Language Retrieval

Query: in Japanese

Target Doc: in English — use links from Wikipedia as before.

Algorithm Rank-Loss MAP P10

TFIDFg,,5.,(Google translated queries) 4.78% 0.31940.009 | 0.259+0.008
alL.SIg,pngt+(1 — @) TFIDF gm0, 3.71% 0.30040.008 | 0.253+0.008
aCL-LSIp+(1 — o) TFIDF gm0 3.31% | 0.27540.009 | 0.21240.008
SSIp..em, (GOogle Translated) 1.72% 0.399+0.009 | 0.325+0.009
SSIuEng 0.96% 0.438+0.009 | 0.351+0.009

18

What'’s Inside w7

We can look at the matrix W we learn and see the synonyms it learns
(large values of Wij):

Kitten cat cats animals species dogs
vet veterinarian veterinary medicine animals animal
ibm computer company technology software data
nyc york new manhattan city brooklyn
c++ programming windows mac unix linux
Xbox console game games microsoft windows
beatles mccartney lennon song band harrison
brithney spears album Music pop her

19

v

v

v

Summary

sos V&

Powerful: supervised method for document ranking.
Efficient low-rank models — learn hidden representations.

co: V&

Nonlinearities improve accuracy.

20

Part 4

Situated Learning: Hidden Representations
for Grounding Language

The Concept Labeling Task

Collaborators: Antoine Bordes, Nicolas Usunier

21

Connecting NLP with a world: Why?

e Existing NLP: Much (not all) solves syntactic or semantic sub-tasks:
E.g. POS, chunking, parsing, SRL, MT, summarization ...
They don't use “situated” learning.

Q We understand language because it has a deep connection to the
world it is used in/for — strong prior knowledge

“John saw Bill in the park with his telescope.”
“He passed the exam.”
" John went to the bank.”

World knowledge we might already have:
Bill owns a telescope.
Fred took an exam last week.
John is in the countryside (not the city).

How can a computer do that?
22

Learning Speech in a Situated Environment?

=, il - is #
Okay, who is the owner of e

m ' = -~ " 3 this house? we need

~ 50 is it me, or did . .__h‘_...pt iq...l another hot tub

4 1 you just see those E { EnEs
bubbles too? " .

3]

I don’t know why you

| | guys are forming a line ¢

..these are all for me.

Someone talk to me.
come oh.. I am hot!

Hey everyone! You
having a good time at : B

my backyard bash? =

o
-

ladies....

how you dain'?
whatEVAY!

Hey Binky, check out
my new pants. BTW,
nice partylll

23

The Learning Signal : text adventure game

4 7, B
L i
e = A
.

T e T
e h."""

Pl N

- Planet Earth = tricky:
vision, speech, motor control -+ /language understanding.

Multi-user game (e.g. on the internet) = easier.
Simplest version = text adventure game. Good test-bed for ML7

Represent atomic actions as concepts (get, move, give, shoot, ...).
Represent physical objects as concepts (characteri, keyl, key2, ...).

(Can consider this signal as a pre-processed version of a visual signal.)

24

The Concept Labeling Task

Definition:
Map any natural language sentence x € X to its labeling in terms of
concepts y €)Y, where y is a sequence of concepts.

One is given training data triples {x;,y;,u;};—1...m € X x Y xU where u;
is the current state the world.

Universe = set of concepts and their relations to other concepts,
U= (C,Ri,...,Rn), where n is the number of types of relation and R; C c?,
Vi=1,...,n.

— Learning to perform this task is appropriate because:
- possibly very complex rules to learn,
- rule-based systems might scale badly with large problems,
- flexibility from one domain to another.

25

Example of Concept Labeling

Define two relations:

e location(c) = ¢ with ¢, ¢ €C,

e containedby(c) = ¢ with ¢, ¢ € C.
A training triple (x,y,u) e X x Y x U:

IOCatton

1tchen>

locatton
contamedby

<Gma>

containedby,

location

<M.
<move >
m <garden>
location

26

Disambiguation Example

Step 0:

D

\ itchen>
<]ohn>
<Gma>

2]z

%

27

Disambiguation Example

Step 4:

o (i) o] [[

HECE

kitchen>

u/- =
I

(1)

Label "He" requires two rules which are never explicitly given.

28

Ambiguities we will handle

He picked up the hat there.
The milk on the table.
The one on the table.

She left the kitchen.

The adult left the kitchen.

Mark drinks the orange.

(e.g. for sentence (2) there may be several milk cartons that exist. ..

29

Concept Labeling Is Challenging

e Solving ambiguities requires to use rules based on linguistic
information and available universe knowledge.

e But, these rules are never made explicit in training.

— A concept labeling algorithm has to learn them.

e NO engineered features for describing words/concepts are given.

— A concept labeling algorithm has to discover them from raw data.

30

Learning Algorithm : Basic Argmax

We could do this:

y = fl@,u) =argmax,, glz,y u),

g(+) should be large if concepts 3 are consistent with both the sentence
r and the current state of the universe u.

However. .. could be slow.

31

Simulation : algorithm

Model a world + Generate training data for our learning task:

1. Generate a new event, (v,a) = event(u).
— Generates verb-+ set of args — a coherent action given the universe.

E.g. actors change location and pick up, exchange & drop objects. . .

2. Generate a training triple, i.e. (x,y)=generate(v,a).
— Returns a sentence and concept labeling pair given a verb -+ args.

T his sentence should describe the event.

3. Update the universe, i.e. u:= exec(v)(a,u).

32

Labeled Data generated by the Simulation

Simulation of a house with 58 concepts: 15 verbs, 10 actors, 15 small
objects, 6 rooms and 12 pieces of furniture. ..

the father gets some yoghurt from the sideboard
- <father> <get> - <yoghurt> - - <sideboard>
he sits on the chair
<brother> <sit> - - <chair>
she goes from the bedroom to the Kkitchen
. <mother> <move> - - <bedroom> - - <Kitchen>

the brother gives the toy to her
- <brother> <give> - <toy> - <sister>

— Generate a dataset of 50,000 training triples and 20,000 testing triples
(~55% ambiguous), without any human annotation.

33

Experimental Results using an SVM

Method Features Train Err Test Err
SVMgtruct © + u (loc, contain) 18.68% 23.57%

e No feature engineering: used raw words (and concept relations) as
input.

— Using world knowledge leads to better generalization.

e Can we learn a hidden representation and do better?

34

Neural Network Scoring Function

Our score combines two functions g¢;(-) and k() € RY which are neural
networks.

]

gz, y,u) =) gilz,y—iu) by, u)
1=1

e gi(x,y_;,u) is a sliding-window on the text and neighboring concepts
centered around i word — embeds to N dim-space.

h

e h(y;,u) embeds the i'" concept to N dim-space.

e Dot-product: confidence that ith word labeled with concept ;.

35

Scoring Illustration

Step 0: Set the sliding-window around the 15 word.

(Sliding—window on the tex

ece
and neighboring concepts.tD [PAD] [PAD] [PAD] - [-] [-] [(kitchen>]

'PAD| |PAD | |PAD | - |cooks | the | I rice | [pan | [pan J[pap JE 2 [cone) [=][] |-

36

Scoring Illustration

Step 1: Retrieve words representations from the “lookup table’.

Words represented using a "'lookup—
table' D = hash—table word—vector.

Sliding—window on the text
and neighboring concepts.

(o] (=) (=]
(=) for

37

Scoring Illustration

Step 2: Similarly retrieve concepts representations.

Words represented using a "'lookup—
table' D = hash—table word—vector.

Concepts and their relations represented
‘ Clsing another "lookup-table" C.)
(o] (=) (o]
=

Sliding—window on the text
and neighboring concepts.

uoyvs0|

38

Scori

ng Illustration

Step 3:

Concatenate vectors to obtain window representation.

Concatenation in a big vector
represents the sliding—window

Words represented using a "'lookup—
table' D = hash—table word—vector.

Concepts and their relations represented
using another "'lookup-table" C.
(e) (=] []
Sliding—window on the text
=

and neighboring concepts.

uoyn2I0|

39

Scoring Illustration

Step 4: Compute gi(z,y_1,u).

Embedding of the sliding—window

in N dim-space.

Concatenation in a big vector
represents the sliding—window

Words represented using a "'lookup—
table" D = hash—table word—vector.

Concepts and their relations represented
‘ Clsing another "lookup-table' C.)
cooks| | the | | rice (o] (=] [
Sliding—window on the text
= =

and neighboring concepts.

uoyv20y

w__

Scoring Illustration

Step 5:

Get the concept <John> and its relations.

Embedding of the sliding—window

in N dim-space.

Concatenation in a big vector
represents the sliding—window

Words represented using a "'lookup—
table' D = hash—table word—vector.

Concepts and their relations represented
using another "'lookup-table" C.
(e) (=] []
Sliding—window on the text
=

and neighboring concepts.

uoyn2I0|

41

Scoring Illustration

Step 6: Compute h(<John> u).

Embedding of the sliding-window Embedding of each concept and
in N dim-space. its relations in N dim-space.

Concatenation in a big vector
represents the sliding—window
[X X]

Words represented using a "'lookup—
table' D = hash—table word—vector.
[
Concepts and their relations represented
using another "'lookup-table" C.
|PAD | [PAD | [PAD | [He lcooks| | the | Irice | [pan | [pap] [rap] - [«)[= <o]

(Slldlng —window on the tex

and neighboring concepts.t> [PAD] [PAD] [PAD] - [-][-] [<lutchen>]

uoyv20|

\/l
uonv0|

Scoring Illustration

Step 7: Finally compute the score: ¢i(z,y_1,u) h(<John>, u).

SCORE

Dot product between embeddmg? f

confidence in the labeling

[eee T]
Embedding of the sliding—window Embedding of each concept and
in N dim-space. its relations in N dim-space.

Concatenation in a big vector
represents the sliding—window
[X X J

Words represented using a "'lookup—
table" D = hash—table word—vector.
[
oncepts and their relations represented
‘ Clsmg another "'lookup-table" C.)
|PAD | [PAD | [PAD| " He | lcooks| | the | | rice | [pap | [rap] [ran] - [<coos) [= J[<ice> |

(Slldmg—wmdow on the tex

and neighboring concepts.t> [PAD] [PAD] [PAD] - [-][-] [<lntchen>]

J

uoyv20|

uouwI0Y

Greedy “Order-free” Inference using LaSO

Adapted from LaSO (Learning As Search Optimization) [Daumé & al.,'05].

Inference algorithm:

1.

2.

For all the positions not yet labeled, predict the most likely concept.

Select the pair (position, concept) you are the most confident in.
(hopefully the least ambiguous)

. Remove this position from the set of available ones.

. Collect all universe-based features of this concept to help label

remaining ones.

. Loop.

44

Experimental Results

Method Features

Train Err Test Err

SVMgtruct T 42.26% 42.61%
SVMgtruct © +u (loc, contain) 18.68% 23.57%
NNo g x 32.50% 35.87%
NN g T + u (contain) 15.15% 17.04%
NN g x +u (loc) 5.07% 5.22%
NNor x + u (loc, contain) 0.0% 0.11%

e Different amounts of universe knowledge:

about containedby, location, or both.

— More world knowledge leads to better generalization.

— Learning representations leads to better generalization.

no knowledge, knowledge

45

Features Learnt By the Model

Our model learns representations of concepts embedding space.

Nearest neighbors in this space:

Query Concept Most Similar Concepts
Gina Francoise , Maggie
Mark Harry, John
mother sister, grandma
brother friend, father

cat hamster, dog
football toy, videogame
chocolate salad, milk

desk bed, table
livingroom kitchen, garden
get sit, give

E.g. the model learns that female actors are similar, even though we
have not given this information to the model.

46

Summary

=0 Simple, but general framework for language grounding based on the
task of concept labeling.

./ Scalable, flexible learning algorithm that can learn without hand-
crafted rules or features.

@ Simulation validates our approach and shows that Ilearning to
disambiguate with world knowledge is possible.

Al goal: train learner living in a “computer game world” to learn
language from scratch from interaction alone (communication, actions).

47

Final Conclusion

43

(Some of the) Previous Work

e Blocks world, KRL [Winograd, '72],[Bobrow & Winograd, '76]

e Ground language with visual reference, e.g. in blocks world [Winston
'76],[Feldman et al. '96] or more recent works [Fleischman & Roy
'07],[Barnard & Johnson '05],[Yu & Ballard '04],[Siskind’'00].

e Map from sentence to meaning in formal language [Zettlemoyer &
Collins, '05], [Wong & Mooney, '07], [Chen & Mooney '08]

Example applications:

(i) word-sense disambiguation (from images),

(ii) generate Robocup commentaries from actions,
(iii) convert questions to database queries.

49

Train the System

e Online training i.e. prediction and update for each example.

e At each greedy step, if a prediction y”j IS incorrect, several updates are
made to the model to satisfy:

For each correct labeling alternative yi_yll, g(:l:,?jﬁ:yil,u) > gz, 9, u).

e Intuitively, we want any incorrect partial prediction to be ranked below
all correct partial labeling.
— "Order-free” is not directly supervised.

e All updates performed with SGD + Backpropagation.

50

The Learning Signal: weak labeling scenario

Even more challenging setting: training data {x;,y;,u;};—1, ., as before.
However, y is a set (bag) of concepts - no alignment to sentence.

This is more realistic:
A child sees actions and hears sentences — must learn correlation.

"Purple team is very sloppy today" wzzs------- kick(PinkPlayerll)
- pass(PinkPlayer8, PinkPlayerll)
"Pink8 passes to Pink11" /
---------- =»kick(PinkPlayerll)

"Pink11 looks around for a teammate" « ::-:;,- ballstopped

awn

g
2%,

"Pink11 makes a long pass to Pink8" X‘ kick(PinkPlayerll)
> pass(PinkPlayerll, PinkPlayers8)

kick(PinkPlayer8) Y
"Pink8 passes back to Pink11" =" pass(PinkPlayer8, PinkPlayerll)

51

Extension: weak concept labeling

Y.
0
<r lC e>
<’ 0hl’l> locatton
<move >
<o

o [o [] [

____Q

N—~
\
ohn>
4 \
N <cook> I
\~__’——~
\~~,

locatzon

<Gma>

52

Extension: weak concept labeling

Solution: modified LaSo updates — rank anything in the “bag” higher
than something not in the bag.

Results:

Method Features

Train Err Test Err

SVMgtruet T+ u (loc, contain) 18.68% 23.57%
NN g x + u (loc, contain) 0.0% 0.11%
NNy parg o+ uw (loc, contain) 0.0% 0.17%

53

	part1
	A Brief History Of Machine Learning
	In the beginning: discovery of the Perceptron
	The Quest to Model Nonlinearities
	 They Discovered Multi-Layered Perceptrons
	 They were so excited they kept trying more and more things...
	And more and more things...
	Even though they hadn't reached the complexity of the only known intelligent thing in the universe (the brain)
	..and the universe they were trying to model itself seemed just as complex,
	So they found something less complex... someone came up with a new Perceptron network!
	Life was Convex
	Learning Representations
	Multi-tasking: sharing features
	Semi-supervised learning: Transductive SVM
	Feature Engineering
	Scalability
	IDEA! Rebrand ``Neural Nets'' ``Deep Nets''
	But seriously, putting it all together:
	This Talk: The Big Picture

	part2
	Natural Language Processing Tasks
	NLP Benchmarks
	Complex Systems
	Complex Systems
	NLP: Large Scale Engineering (1/2)
	NLP: Large Scale Engineering (2/2)
	NLP: Large Scale Machine Learning
	Chapter II
	Neural Networks
	Words into Vectors
	Words into Vectors
	Window Approach
	Sentence Approach(1/2)
	Sentence Approach(2/2)
	Training
	Word Tag Likelihood (WTL)
	Sentence Tag Likelihood (STL) (1/2)
	Sentence Tag Likelihood (STL) (1/2)
	Sentence Tag Likelihood (STL) (2/2)
	Supervised Benchmark Results
	Supervised Word Embeddings
	Chapter III
	Ranking Language Model
	Training Language Model
	Unsupervised Word Embeddings
	Semi-Supervised Benchmark Results
	Chapter IV
	Multi-Task Learning
	Multi-Task Learning Benchmark Results
	Chapter V
	Cascading Tasks
	Cascading Tasks Benchmark Results
	Variance
	Parsing
	SRL Benchmark Results With Parsing
	Engineering a Sweet Spot
	SENNA Speed
	SENNA Demo
	Conclusion

	part34
	Part 3
	Document Ranking: Our Goal
	 Basic Bag-o'-words
	Latent semantic indexing (LSI)
	(Polynomial) Supervised Semantic Indexing (SSI)
	SSI: why is this a good model?
	SSI: Why the Basic Model Sucks
	SSI Improved model: Low Rank W
	Neural Network Models for Retrieval
	Doc. Embedding for Polynomial Degree 3
	SSI: Training
	Prior Work: Summary of learning to Rank
	Experimental Comparison
	Experiments: Doc-Doc Ranking
	Experiments: Doc-Doc Ranking
	Experiments: Query-Document Ranking
	Experiments: Cross-Language Retrieval
	What's Inside W?
	Summary
	Part 4
	Connecting NLP with a world: Why?
	Learning Speech in a Situated Environment?
	The Learning Signal : text adventure game
	The Concept Labeling Task
	Example of Concept Labeling
	Disambiguation Example
	Disambiguation Example
	Ambiguities we will handle
	Concept Labeling Is Challenging
	Learning Algorithm : Basic Argmax
	Simulation : algorithm
	Labeled Data generated by the Simulation
	Experimental Results using an SVM
	Neural Network Scoring Function
	Scoring Illustration
	Scoring Illustration
	Scoring Illustration
	Scoring Illustration
	Scoring Illustration
	Scoring Illustration
	Scoring Illustration
	Scoring Illustration
	Greedy ``Order-free'' Inference using LaSO
	Experimental Results
	Features Learnt By the Model
	Summary
	Final Conclusion
	(Some of the) Previous Work
	Train the System
	The Learning Signal: weak labeling scenario
	Extension: weak concept labeling
	Extension: weak concept labeling

