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Abstract. We present a class of models that are discriminatively trained
to directly map from the word content in a query-document or document-
document pair to a ranking score. Like Latent Semantic Indexing (LSI),
our models take account of correlations between words (synonymy, pol-
ysemy). However, unlike LSI our models are trained with a supervised
signal directly on the task of interest, which we argue is the reason for our
superior results. We provide an empirical study on Wikipedia documents,
using the links to define document-document or query-document pairs,
where we obtain state-of-the-art performance using our method.
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1 Introduction

Ranking text documents given a text-based query is one of the key tasks in
information retrieval. A typical solution is to embed the problem in a feature
space endowed with a similarity metric of choice. For example, classical vector
space models use weighted word counts and the cosine similarity. In this case,
the model is chosen by hand and no machine learning is involved. This type of
model often performs remarkably well, but suffers from the fact that only exact
matches of words between query and target texts contribute to the similarity
score.

Latent Semantic Indexing [4], and related methods such as pLSA and LDA
[10, 2], are unsupervised methods that choose a low dimensional feature repre-
sentation of “latent concepts” where words are no longer independent. They are
trained with reconstruction objectives, either based on mean squared error (LSI)
or likelihood (pLSA, LDA). These models, being unsupervised, are still agnostic
to the particular task of interest.

In this article we define a class of models that can be trained on a supervised
signal (i.e., labeled data) to provide a ranking of a database of documents given
a query. For example, if one has click-through data yielding query-target rela-
tionships, one can use this to train these models to perform well on this task.
Or, if one is interested in finding documents related to a given query document,
one can use known hyperlinks to learn a model that performs well on this task.
Although click-through data has been used to learn models before, these models
have typically relied on existing vector space models, and have only optimized a
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few features [13]. This work is orthogonal to those works, and can in fact be used
in conjunction with those methods for further gains. We show experimentally on
Wikipedia that our method strongly outperforms tf-idf vector space models and
LSI on both document-document and query-document tasks.

The rest of this article is as follows. In Section 2 we describe our method,
Section 3 briefly discusses prior work , Section 4 describes an experimental study
of our method, and Section 5 concludes with a discussion.

2 Supervised Semantic Indexing

Let us denote the set of documents in the corpus as and a query text as q ∈ RD,
where D is the dictionary size, and the jth dimension of a vector indicates the
frequency of occurrence of the jth word, i.e. using the tf-idf weighting and then
normalizing to unit length.

The set of models we propose are simply of the following type:

f(q, d) = q>Wd =
D∑

i,j=1

qiWijdj (1)

where f(q, d) is the score between a query q and a given document d, and W ∈
RD×D is the weight matrix, which will be learnt with a supervised signal. This
model can capture synonymy and polysemy as it looks at all possible cross
terms, and can be tuned directly for the task of interest. Note that we do not
use stemming since our model can already match words with common stems.

We now discuss two main issues: (i) how to train it, and (ii) how to control
training and test time efficiency. The latter will lead us to several algorithmic
proposals that are still of the form (1) but with constraints on the form of W .

2.1 Training

Suppose we are given a set of tuples R (labeled data), where each tuple contains
a query q, a relevant document d+ and an irrelevant (or lower ranked) document
d−. We would like to choose W such that q>Wd+ > q>Wd−, that is d+ should
be ranked higher than d−. To do this we employ the margin ranking loss [9] which
has already been used in several IR methods before [13, 3, 6], and minimize:∑

(q,d+,d−)∈R

max(0, 1− q>Wd+ + q>Wd−). (2)

We train this using stochastic gradient descent (see, e.g. [3]): iteratively, pick a
random tuple and make a gradient step for that tuple. We use the (fixed) learning
rate which minimizes the training error. Our method thus far is essentially a
margin ranking perceptron with a particular choice of features, and hence related
to a ranking SVM [13], except we have a highly scalable optimizer. However, we
note that such an optimizer cannot be easily applied for probabilistic methods
such as pLSA because of their normalization constraints. Recent methods like
LDA [2] also suffer from scalability issues.
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2.2 Controlling Efficiency (and Capacity)

Efficiency of a dense W matrix We consider both memory and speed
considerations. Firstly, this method so far assumes that W fits in memory. For
example, if the dictionary size D = 30000, then this requires 3.4Gb of RAM
(assuming floats).

The vectors q and d are sparse so the speed of computation of a single query-
document pair involves mn computations qjWijdi, where q and d have m and n
nonzero terms, respectively. We have found this is reasonable for training, but
may be an issue at test time1. Alternatively, one can compute v = q>W once,
and then compute vd for each document. This is the same speed as a classical
vector space model where the query contains D terms, assuming W is dense.

Sparse W matrices If W was itself a sparse matrix, then computation of
f(·) would be considerably faster. If the query has m nonzero terms, and any
given column of W has p nonzero terms, then the method is at most mp times
slower than a classical vector space model. We can enforce W to be sparse using
standard feature selection algorithms; we hence generalize the “Recursive Feature
Elimination” algorithm (see [8], Chapter 5) yielding a simple, intuitive method:

1. First, we train the model with a dense matrix W as before.
2. For each column i of W find the k active elements with the smallest values

of |Wij |. Constrain these elements to equal zero (make them inactive).
3. Train the model with the constrained W matrix.
4. If W contains more than p nonzero terms in each column go back to 2.

This scheme is simple, efficient, and yielded good results (cf. Section 4).

Low rank W matrices An alternative efficient scheme is to constrain W in
the following way:

W = U>V + I. (3)

This induces a low dimensional “latent concept” space in a similar way to LSI.
However, it differs in several ways: most importantly it is trained with a super-
vised signal. Further, U and V differ so it does not assume query and target
document should be embedded in the same way, and the addition of the iden-
tity term means this model automatically learns the tradeoff between using the
low dimensional space and a classical vector space model. In terms of efficiency
however it is the same: its speed depends on the dimensionality of U and V .

We also highlight several variants:

– W = I: if q and d are normalized tf-idf vectors this is equivalent to using the
standard cosine similarity with no learning (and no synonymy or polysemy).

– W = D, where D is a diagonal matrix: one learns a re-weighting of tf-idf
using labeled data. This is similar to a method proposed in [6].

– W = U>U + I: we constrain the model to be symmetric; the query and
target document are treated in the same way.

1 Of course, any method can be sped up by applying it to only a subset of pre-filtered
documents, filtering using some faster method.
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Table 1. Results and standard errors for Wikipedia document-document ranking.

Algorithm Parameters Rank-Loss MAP P@10

TFIDF 0 1.62% 0.329±0.011 0.162±0.007
Query Expansion 2 1.62% 0.330±0.011 0.162±0.006
αLSI + (1− α)TFIDF 200D+1 1.28% 0.346±0.010 0.170±0.007
SSI: W = D D 1.41% 0.355±0.011 0.177±0.007

SSI: W = U>U + I 200D 0.41% 0.506±0.012 0.225±0.007

SSI: W = U>V + I 400D 0.30% 0.517±0.012 0.229±0.007
SSI: W unconstrained D2 0.41% 0.477±0.012 0.212±0.007
SSI: sparse W 1000D 0.41% 0.461±0.012 0.213±0.007
SSI: sparse W 100D 0.40% 0.462±0.011 0.209±0.007
SSI: sparse W 10D 0.53% 0.425±0.011 0.197±0.007

Table 2. Results and standard errors for Wikipedia query-document ranking.

Algorithm Parameters Rank-Loss MAP P@10

TFIDF 0 14.0% 0.083±0.007 0.035±0.003
αLSI + (1− α)TFIDF 200D+1 9.73% 0.089±0.007 0.037±0.003

SSI: W = U>U + I 200D 3.10% 0.213±0.007 0.095±0.003

SSI: W = U>V + I 400D 2.91% 0.229±0.007 0.100±0.003

3 Prior Work

A tf-idf vector space model and LSI [4] are the main baselines we will compare
to. We already mentioned pLSA [10] and LDA [2]; here we briefly discuss other
relevant methods. Query Expansion (QE) is another way to employ synonyms,
but requires manual tuning and does not always yield a consistent improvement
[14]. The authors of [6] learn the weights of an orthogonal vector space model on
Wikipedia links, improving over the OKAPI method. Joachims et al.[13] trained
a SVM with hand-designed features based on the title, body, search engines
rankings and the URL. Burges et al.[3] proposed a neural network method using
similar features (569 in total). In contrast we limited ourselves to body text (not
using title, URL, etc.) and train on D2 = 900 million features. We note in [7]
related models were used for image retrieval, and in [5] for advert placement.

4 Experimental Study

We argue that standard retrieval datasets [12, 11] are too small to train our
model, whereas click-through from search engines is not publicly available. We
hence used a set of 1,828,645 Wikipedia documents as a database, and split the
24,667,286 links randomly into 70% for training and 30% for testing. All methods
use only the top 30,000 most frequent words. We considered the following task:
given a query document q, rank the other documents such that if q links to
d then d is highly ranked. We trained several variants of our approach, called
Supervised Semantic Indexing (SSI), as described in Section 2.2. Results on the
test set in comparison to tf-idf/cosine similarity (TFIDF), αLSI + (1−α) TFIDF
and QE (Standard Rochio [1], optimizing β and |Dr|, fixing γ = 0) are given



Supervised Semantic Indexing for Ranking Documents 5

in Table 1. For LSI we report the best value of α and dimensionality, optimized
on the training set. We then report the low rank version of SSI using the same
choice of dimension. In terms of ranking loss (the percentage of tuples in R that
are correctly ordered), mean average precision2 (MAP) and precision at position
10 (P@10), all our methods strongly outperform the existing techniques.

We also tested our approach in a query-document setup. We used the same
setup as before but kept only 10 random words from query documents in an
attempt to make it like a “keyword search”. We obtained similar improvements
to before, as shown in Table 2.

5 Discussion

We have described a versatile, powerful set of discriminatively trained models for
document ranking. Many generalizations are possible: exploring the use of the
same models for cross-language retrieval, adding more features into our model, or
generalizing to nonlinear models. Future work will explore these avenues further.
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