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Abstract

We study the standard retrieval task of ranking a fixed set of documents given
a previously unseen query and pose it as the half-transductive ranking problem.
The task is partly transductive as the document set is fixed. Existing transductive
approaches are natural non-linear methods for this set, but have no direct out-of-
sample extension. Functional approaches, on the other hand, can be applied to
the unseen queries, but fail to exploit the availability of the document set in its
full extent. This work introduces a half-transductive approach to benefit from the
advantages of both transductive and functional approaches and show its empirical
advantage in supervised ranking setups.

1 Introduction

The task of ranking a set of documents given a query is the core task of Information Retrieval
(IR). In most setups, the set of documents to rank is fixed (or slowly growing) while the set of
submitted queries is unknown. This environment gives rise to an interesting learning problem, half-
transductive ranking, in which all the documents to rank are available at training time, while the test
queries are only revealed once the model is trained.

Although frequent in Information Retrieval, previous literature mainly ignores this specific aspect
and considers a setup in which the ranking model is learned to generalize to both new documents
and new queries. Most ranking models learn a scoring function which assigns a real valued score
to a feature vector describing a query/document pair. Given a query, the function is applied to each
document and documents are ranked by decreasing scores. Models relying on this paradigm include
the ranking perceptron [1], ranking SVM [2] or rankNet [3] among others. Hence, these approaches
can be referred to as functional.

In contrast, non-functional approaches have been proposed in the literature for fully transductive se-
tups, where the learnt similarity measure can only be assessed between objects available at training
time. These approaches, such as as Isomap [4], Locally Linear Embedding [5] or Laplacian Eigen-
maps [6], perform nonlinear dimensionality by learning a parameter vector for each training object.
The comparison of the parameter vectors associated with a document and a query (e.g. through the
Euclidean distance) allows for scoring the document against the query. Compared to functional ap-
proaches, non-functional strategies provide highly non-linear embeddings, while relying on simple
optimization. Moreover, they do not tie the object embedding to a specific feature representation but
rather focus on the inter-object relationships.

Despite these advantages, non-functional approaches are hard to apply in our setup, which is only
half-transductive: all the documents are available for training, but the test queries are not. Of course,
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one could advocate for using out-of-sample extensions that allow embedding a new object into the
learned space [7]. Such a strategy is however not desirable in a retrieval context since: (i) it requires
solving a (potentially expensive) optimization problem after the submission of a new query, which is
the most time critical period for a retrieval system; and (ii) it neglects that available training queries
could be used to identify a good strategy for embedding test queries.

This work proposes a direct solution to the half-transductive ranking problem by combining a
functional model for embedding queries and a non-functional model for embedding objects. This
approach hence benefits from the advantages of the non-functional approaches mentioned above,
while retaining the efficiency and generalization ability of functional approaches for coping with
new queries. In the following, we first briefly describe existing ranking models before introducing
the proposed approach. Then, we empirically compare this solution to its alternatives. Finally, we
draw some conclusions and delineate future research directions.

2 Functional and Non-Functional Models

Our ranking problem is classical. We are first given a fixed set of m objects, {yi}mi=1, and we
consider the task of ranking these objects given a new query x, unknown at training time. In the
following, we classify models addressing this problem as either functional or non-functional.

2.1 Functional Models

These models represent query x and object y using a joint feature representation Φ(x, y) and scores
the pair (x, y) using a function x, y → fw(Φ(x, y)) parameterized by w. Instances of such func-
tions include: functions linear in the feature space [1, 2], neural network functions [3] or Gaussian
Processes [8]. These models can be learned with training objectives linked to the pairwise ranking
loss, Normalized Discounted Cumulative Gain (NDCG) or Mean Averaged Precision (MAP).

Functional models also include Latent Semantic Indexing (LSI) [9], which corresponds to a linear
function with a specific choice of features and parameter regularization, i.e. one can notice that
LSI scoring, fW (x, y) = φ(x)TWTWφ(y), where φ(x), φ(y) ∈ Rd, W ∈ Rd×n, n < d,
is equivalent to a linear model, when one defines w = WTW and Φ(x, y) = φ(x)φ(y)T. In this
case, the parameters are learned with a mean-squared reconstruction objective, by applying Singular
Value Decomposition to the document-term matrix [9]. The same parameterization is also used by
Supervised Semantic Indexing (SSI [10]), which learns the parameters from a supervised signal, to
minimize the pairwise ranking loss.

2.2 Non-Functional Models

These models are transductive approaches which assign a parameter vector vi ∈ Rd to each ob-
ject yi available at training time. Contrary to functional approaches, these strategies do not tie
the object representation vi to a feature representation Φ(·) through a function. Instead, they con-
sider a function f comparing examples in the embedding space Rd, e.g. the Euclidean distance
f(yi, yj) = ||vi − vj ||2 or the dot-product f(yi, yj) = vi · vj , and learn {vi}mi=1 by considering
desired relationships between objects.

Several transductive embedding approaches have been proposed in the recent years. Most
of them are rooted either in factor analysis (e.g. Principal Component Analysis) or Multi-
Dimensional Scaling, including kernel PCA [11], Isomap [4], Locally Linear Embedding
[5] and Laplacian Eigenmaps [6]. For example the latter embeds points by minimizing∑

ij L(vi, vj , Aij) =
∑

ij Aij ||vi − vj ||22 where A is a similarity (“affinity”) matrix, under con-
straints that ensure a trivial solution is not reached. An overall review of this family of methods can
be found in [12].

Non-functional, transductive models hence offer a flexible framework to learn highly non-linear
models and benefit from available information on relationships between objects. However, exten-
sions to new objects – such as queries in our framework – are computationally costly and depends on
the availability of information on the relationship between the new object and the already available
objects [7].
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3 Half-Transductive Ranking

In this work, we propose Half-Transductive Ranking to benefit from the advantages of both func-
tional and non-functional approaches. Like transductive approaches, we assign a vector vi to each
object yi in the fixed set to be ranked. However, we then consider a query x can be any object, not
necessarily available during training. In that case, a function is applied to map x into the embedding
space. Specifically, our scoring function is

f(x, yi) = 〈Wφ(x), vi〉 = φ(x)TWTvi, where W ∈ Rd×n, ∀i = 1 . . .m, vi ∈ Rd,

i.e. the dot product is used to compare embedded examples and a linear projection is used for
mapping queries (nonlinear embeddings are implemented via φ(·) being a fixed nonlinear map).

The parameters of our model, i.e. W and {vi}mi=1 are learned to optimize the pairwise ranking
loss. From a set of preference relations R, where ∀(x, y+, y−) ∈ R expresses that document y+
is preferred to document y− for query x, we would like to learn f such that f(x, y+) > f(x, y−).
Like the margin ranking perceptron [1] or the ranking SVM [2], we minimize the hinge loss over
such pairwise constraints,

LHTR(R) =
∑

(x,y+,y−)∈R

max(0, 1− φ(x)TWTv+ + φ(x)TWTv−).

In our experiments, we noticed that a better linear mapping W could be obtained by learning to
embed documents functionally as well and we introduce an hyperparameter γ to weight this second
learning objective, i.e.

L(R; γ) = LHTR(R) + γ
∑

(x,y+,y−)∈R

max(0, 1− φ(x)TWTWφ(y+) + φ(x)TWTWφ(y−)).

This second objective is only used to provide further data for learning the functional mapping W .
At test time, the functional mapping W is used solely for projecting the queries while documents
are represented with their transductive vectors {vi}mi=1.

We propose to train this model using stochastic gradient descent as this optimization strategy allows
to achieve great scalability while avoiding poor local optima. The learning algorithm is hence sim-
ple: initially, the entries of W and {vi}mi=1 are drawn randomly using from a normal distribution
N (0, 1). Then, one iteratively picks a random triplet (x, y+, y−) ∈ R and updates the parameters
according to the gradient of (W, v+, v−) → L({(x, y+, y−)}; γ). One can note that this approach
is computationally interesting since each iteration only updates W and two of the vectors {vi}mi=1.
Moreover, one can further exploit the potential sparsity of φ(x) for further gains. In our experiments,
regularization is achieved through early stopping, i.e. one stops training when the performance over
held-out validation data stops improving.

4 Experiments and Results

Our ranking experiments are carried out on Wikipedia and use the link structure of this dataset to
build a large scale ranking task. Wikipedia provides a large document set with a meaningful, closed
link structure. Compared to benchmark datasets, we can work with bigger query sets compared to
TREC1 and we can extract document-level features as opposed to LETOR2.

The dataset we consider consists of 1,828,645 English Wikipedia documents and 24,667,286 links3

which is randomly split into two portions, 70% for training (and validation) and 30% for testing.
The following task is then considered: given a query document x, rank the other documents such
that if x links to y then y should be highly ranked. The links are hence used as surrogates for
relevance assessments and are not considered as features. Documents are represented with bag-of-
word vectors, with a normalized TFIDF weighting [10].

Our results are compared to four alternative models: simple cosine similarity (TFIDF), LSI [9],
margin ranking perceptron [1] and SSI [10]. We report results in two settings, (i) using only the top

1TREC datasets offer ∼ 50 to ∼ 500 queries, http://trec.nist.gov
2LETOR provides features for query/doc. pairs only, http://learningtorank.spaces.live.com/
3We removed links to calendar years as they provide little information while being very frequent.
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Table 1: Document-document ranking on Wikipedia

Algorithm 30k words 2.5M words
Rank-Err (%) MAP P@10 Rank-Err (%) MAP P@10

TFIDF 1.62 0.33 0.16 0.84 0.43 0.19
LSI 1.28 0.35 0.17 0.72 0.43 0.19
Perceptron 0.41 0.48 0.21 0.35 0.49 0.22
SSI 0.30 0.52 0.23 0.16 0.55 0.24
Half-Transductive 0.20 0.56 0.24 0.11 0.61 0.26

30,000 most frequent words; (ii) using all 2.5 million words in Wikipedia. In the first setting, we
rely on a margin perceptron with Φ(x, y) = φ(x)φ(y)T. In the second setting, we rely on perceptron
using Hash Kernels [13] as the previous feature choice does not allow the model to fit in memory.
The various hyperparameters of the models have been selected to maximize the ranking loss over
a held-out validation subset of the training data: this procedure selected an embedding dimension
n = 100, a regularizer value γ = 0.1 and a hash size of h = 6M for the perceptron with hash kernel.

Table 1 reports the performance using the pairwise ranking error, Mean Averaged Precision, MAP,
and precision at top 10, P@10. It shows that supervised models (Perceptron, SSI, Half-Transductive)
outperform unsupervised ones (TFIDF, LSI). It also shows that embedding the data in a lower dimen-
sional space is an effective capacity control mechanism (SSI versus Perceptron). More importantly,
it shows that the additional non-linearity added by introducing the non-functional parameter vectors
{vi}mi=1 greatly enhances performance (SSI versus Half-Transductive). In fact, the half-transductive
model outperforms all alternatives. A last remark on γ, this hyper-parameter is important: it pushes
{vi}mi=1 toward the solution provided by SSI which results in significant gain (γ = 0 yields a ranking
error of 0.38% over the 30k-word test data compared to 0.20%).

5 Conclusions

This work studies the task of ranking a fixed set of documents given a previously unseen query.
This classical IR setting yields us to introduce half-transductive ranking. Like transductive, non-
functional embeddings, we learn a parameter vector to represent each of the known documents.
At the same time, we learn a functional mapping to project test queries onto the document em-
bedding space. This approach is different from test-time out-of-sample extensions for nonlinear
dimensionality reduction techniques since we learn this function from training queries at training
time. This approach is also different from classical functional ranking approaches which focus on
models generalizing to both new documents and new queries while our strategy explicitly considers
the availability of the documents at both train and test time. Our experiments over Wikipedia data
demonstrate the advantages of our approach over functional ranking alternatives.
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