Artificial Neural Networks

Ronan Collobert

ronan@collobert.com

Introduction: Neural Networks in 1980

hidden
layer

output
layer

E0403 129 Figure 2 Hicrapchica newral vefwor b sfrucfure

Hidden Modes

Input Modes

Introduction: Neural Networks in 2011

x —-)[Wl X o]—-)[tanh(o)]—-)[ﬂﬂ X 0}—) score

o Stack matrix-vector multiplications interleaved with non-linearity

@ Where does this come from?

@ How to train them??

o Why does it generalize?

e What about real-life inputs (other than vectors z)7?
@ Any applications?

Biological Neuron

Dendrite

action refractory
50 — potential period

l Soma

P ™

= . . i
_.E. depolarization —» «—— repolarization
= 0 ' | |
=

=

&

T

ax (—threshuld potential

S .50 —

{5

=

=

@

=

L resting potential Al hyperpolarization

-100 T T T T T T T T
0 1 2 3 4 5 6 7
Time (milliseconds)
Action Potential in a Neuron

@ Dendrites connected to other neurons through synapses
o Excitatory and inhibitory signals are integrated
o If stimulus reaches a threshold, the neuron fires along the axon

McCulloch and Pitts (1943)

@ Neuron as linear threshold units

Inputs Weights
I W

2

Threshold T

In

e Binary inputs z € {0, 1}d, binary output, vector of weights w € R?

) = I ifw-x>T
1 0 otherwise

@ A unit can perform OR and AND operations
@ Combine these units to represent any boolean function

@ How to train them?

Perceptron: Rosenblatt (1957)

| A

o —(p—h-

o o o w @p(x)
/
/

associative
area

o Input: retina x € R"
o Associative area: any kind of (fixed) function ¢(z) € R?
@ Decision function:

] —1 otherwise

f(:l:)—{l if w-p(x)>0

o Training: minimize 3, max(0, —y’ w' - ¢(z?)), given (2%, y) € R? x {—1,1}

t AT I t
witl =t o Ly elat) ifyhw - p(at) <0
0 otherwise

Perceptron: Convergence (Novikoff, 1962)

Assuming classes
are separable

o Cauchy-Schwarz (pmaz = 2/||ul])...

t t
w-w” < lul] [[w]]

2 ¢
< [Jw"]|

" Pmazx

o 1 defines maximum
margin separating hyperplane...

u-wt:u-wt_lertu-xt
Zu-wt_lJrl
> 1

@ When we do a “mistake’ ...

U = P 2yt 0l o o et
< Hwt—1||2_|_R2

<t R?

[|w

o We get: 4 R2
t <

— 2
Pmax

Adaline: Widrow & Hoff (1960)

o Problems of the Perceptron:

* Separable case:
does not find a hyperplane equidistant from the two classes

* Non-separable case: does not converge

e Adaline (Widrow & Hoff, 1960) minimizes
1 t £112
52(9 —w - p(r))
t

@ Delta rule:

Wl = wt £ Ayt — wt - o) ot

Perceptron: Margin
See (Duda & Hart, 1973), (Krauth & Mézard, 1987), (Collobert, 2004)

@ Poor generalization capabilities in practice
@ No control on the margin:

2 Pmax
— >
Jlwh|| = R

0

e Margin Perceptron: minimize >, max(0, 1 — 3yt w’ - p(z?))

t AT t
witl =t 4 d Y el) i yrwe p(at) <1
0 otherwise

o Finite number of updates:

t < (= + R?)
/072nax A
o Control on the margin:
1
P 2 Pmaz

Perceptron: In Practice

iter)

10

Regularization

e In many machine-learning algorithms (including SVMs!)
early stopping (on a validation set) is a good idea

1 G T T T T T T
Training error —— | Validation error (Glass dataset, 4+4 hidden)
Validation error - |
99 -
*-- ' '
¥ I' |
".n 9.8 | |I |
||",.II 9 ? ||| Illr_\l X
. III rfvm \L"'._, J|'I
|
96 - |I IIlII| \ /_/f/
p
o I.-"lII | / 'IIII II|
. 4 '|II / rf\/\\/{)
9.4 | ™M
9.3 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

From (Prechelt, 1997)

o Weight decay

pl[wl[* + max(0, 1 — y' w’ - p(a?))
This is the SVM cost!

11

Going Non-Linear:

@ Consider the decision function

e Non-linearity achieved by hand-crafting a non-linear ¢(+)

Kernel Perceptron (1964)

if w-p(x) >0
otherwise

151

0.5

o Here p(z) = ¢(x1,19) = (2%, V2a1 29, 2
o Problem: the dot product is slow to compute in high dimensions

I
-15

(1/2)

12

Going Non-Linear: Kernel Perceptron (1964)

@ See (Aizerman, Braverman and Rozonoer, 1964)

o Consider now the update

t AT I t
witl — ot o Ly elat) if yhw - p(at) <0
0 otherwise

o Decision function at the b

flle)=" > y'e))

te “updated”

example can be written as:

@ Can use a kernel instead

K(z, 2') = p(a') - p(x)
o E.g., for ¢(z) = p(r1,19) = (2%, V2x1 29, 23) a possible kernel is
K(ilj, 3315) — <‘CE) xt)z

o K(-, -) is a kernel if Vg

such that /g(az)Qdaz < oo then /K(:E, y)g(z) g(y)dedy >0

(2/2)

13

Link with SVMs

o Support Vector Machines unify nicely all the previous concepts

* Early versions: (Vapnik & Lerner, 1963), (Vapnik, 1979)

* Perceptron 4+ Margin 4+ Regularization
— soft-margin Support Vector Machines
(Cortes & Vapnik, 1995)

* Perceptron 4+ Margin 4+ Regularization 4+ Kernel
— non-linear Support Vector Machines
(Hard-margin SVMs: Boser, Guyon & Vapnik, 1992)

@ For linear SVM, primal optimization is ok

@ For non-linear kernels, sparsity issues with gradient descent in the primal
— efficient algorithms exist in the dual, or consider a budget

@ see SVM course

14

Going Non-Linear: Adding Layers

e How to train a “good” ¢(-)?
e Neocognitron: (Fukushima, 1980)

V

(1/2)

15

Going Non-Linear: Adding Layers (2/2)
e Madaline: (Winter & Widrow, 1988)

ADALINE
Neurons

Input Outputs

pattern

X, &=
y +1 p— Binary
_ ﬁ 3 —T— —+¥ Output
x ® —-1 q
3
. : Threshold
4 . W Device

Hidden-layer ‘
First Layer output Adaptive Desired response
Neurons pattern Algorithm input

/
53

| (training signal)
L]

ADALINE

Figure 1: Layered feed-forward ADALINE network.

o Multi-Layer Perceptron

x -—)[Wl X o]—-)[tanh(o)}—)[W2 X o}—) score

@ Training solution: gradient descent

16

Universal Approximator (Cybenko, 1989)

@ Any function
g RY >R

can be approximated (on a compact) by a two-layer neural network
x —-)[VV1 X o}-—)[tamh(o)J—-—)[I/V2 X o]-—) score

o Cybenko used

x~ T he Hahn Banach theorem
* T he Riesz representation theorem

17

Gradient Descent (1/4)

o Given a set of examples (z!,y!) e RIx N, t=1...T,
we want to minimize

T
CO) = clfylz"), v')
t=1
@ Batch gradient descent
aC(6)

* Update after seeing all examples
* Variants: see your optimization book (Conjugate gradient, BFGS...)
* Slow in practice

@ Take advantage of redundency: stochastic gradient descent
Pick a random example ¢

Oc(fo(="), y')
00

0 <— 60—\

* Update after seeing one example

18

Gradient Descent:

Learning Rate

@ The learning rate must be chosen carefully

@ Good idea to use a validation set

E(w)
A
N <N opt
E(w)
A
-
1 = 1 opt

(2/4)

E(w)
A
T] = Tlnpt
E(w)
A @
N >2 Mgy

From (LeCun, 2006)

19

Gradient Descent: Caveats (3/4)

@ Consider the network

T wl x e tanh(e) w? X e log(1 + e_y‘)]

With one example (x =1,y = 1) and one hidden unit!

1

h

—

-1 -0.5 0 05

@ NO progress in some directions
@ Saddle points, plateaux..

20

Gradient Descent: Tricks 0f The Trade

o Initialize properly the weights
x Not too big: tanh(e) saturates
* Not too small: all units would do the samel

e Normalize properly your data (mean/variance)
~ Again, you want to be in the right part of the tanh(e)

e Use a second order approach (H is the Hessian)
0C(0)
00

* Costly with full Hessian, consider only the diagonal

CO+¢€e)~C(0)+ e+e H(e

* Estimated on a training subset

* Be sure it is positive definite!

* Can be “backpropagated” as the gradient
* Update with

_ 7
>_62_C_|_ VEk
ooz T H

(4/4)

21

Gradient Backpropagation

o In the neural network field: (Rumelhart, Hinton, Williams, 1986)

@ However, previous possible references exist,
including (Leibniz, 1675) and (Newton, 1687)

o View the network+loss as a ‘‘'stack’” of layers

v

@ Minimize the score by gradient descent

flx)=fr.(fr—1(... filr)) — How to compute % Vi

o For e.g., in the Adaline L =2

x w! X e %(y—o)
* f1(93>=’ui1-$
« ol f1) = 5(y — f1)?
;_f: ng gfll chain rule
w9 du

=y—f1 ~ "

(1/2)

77

22

(2/2)

Gradient Backpropagation

v A A LO S {4

o Brutal way:
of _ Ofp 9fr—1 Ofin1 O
owt Ofp_10fr—o aof; ow!

o In the backprop way, each module f;()
*» Receive the gradient w.r.t. its own outputs f;

* Computes the gradient w.r.t. its own input f;_; (backward)
* Computes the gradient w.r.t. its own parameters w! (if any)

of _of 9Ofi

Ofi—1 011 0f1—1
of Of 9f

owl 0f; ow!

o Often, gradients are efficiently computed using outputs of the module
Do a forward before each backward

23

Examples 0f Modules
o For simplicity, we denote

* x the input of a module

* z target of a loss module

*~ y the output of a module fj(x)

* ¢ the gradient w.r.t. the output of each module

Module Forward Backward Gradient
Linear y=Wax Wty gt
MSE Loss y=%(x—z)2 T —z

Tanh y = tanh(x) 7(1—y?)

Sigmoid y=1/14+e") g(l—yy
Perceptron Loss y =maz(0, —zx) —1,.,.<0

See Lush, Torchb5, Theano...

Likelihood For Classification

o Given a set of examples (zf,y!) e R x N, t =1...T
we want to maximize the (log-)likelihood

T T
log [[p(v'|2") = > logp(y'|=")
t=1 t=1

® The network outputs a score fy(z) per class y
o Interpret scores as conditional probabilities using a softmax:

efy(aj)

plylz) =

o In practice we prefer log-probabilites:

log p(y|z) = fy(x) —log | Y efil?)

(1/2)

25

Likelihood For Classification

e Assume only two class problems, y € {—1, +1}
of1(2)

37) + ef—l(x)
of-1(x)

efl(x) -+ ef—l(x)

= —log(1 + e~ ¥ (fil@)=f-1(@))

1 — 1lz) =1
ogp(y = 1|x) 8

= —log(1 + e~ ¥ (1lz)—f1(2)y

logp(y = —1|z) =log

@ Note: only one network output needed

° Taking z =y (fi(z) — f-1(z)),
2z +—log(1+ e %) is a smooth version of SVM cost

- Iog‘(1+exp‘(—z))
-Z|

...
-

(2/2)

26

Likelihood For Regression

@ The target variables y € R are now continuous
o We often consider

o In this case,

1
log p(y|z) = —272Hy — f(@)|I” + cste

e Equivalent to Mean Squared Error (MSE) criterion...
@ Not great to classification

27

Unsupervised Training

e How to leverage unlabeled data (when there is no y)7?
@ Deep architectures are hard to train: how to pretrain each layer?

o “"Auto-encoder/bottleneck” network: try to reconstruct the input

o Caveats:

x PCA if no W2 layer (Bourlard & Kamp, 1988)
* It is a bottleneck mapping...

(1/2)

28

(2/2)

Unsupervised Training

v
N
tanh(e)

[We N\

tanh(e)

@ Possible improvements:

T
x No W? layer, W3 = [Wl} (Bengio et al., 2006)
* Inject noise in z, try to reconstruct the true =z (Bengio et al., 2008)

* Impose sparsity constraints
on the projection (Kavukcuoglu et al., 2008)

29

Specialized Layers: RBF

r =3 RBFy1 W2 x o

o A Radial Basis Function (RBF) layer is defined by:

=gl
friz)=e 27

o Better to find parametrization of ¢ such that it is strictly positive:

o=0-+0
o Gradient is zero if W! colums are far from training examples

— Initialize with K-Means

30

Specialized Layers: 1D Convolutions

x —-)[Conv 1D]—)[Subsampl. 1DConv 1D

i

@ Weights are “shared” through time

X = (Xe1, Xe2-") input (matrix)

Xol X02
W x| Xeoa Xe3 --+ | lconvolution (local embedding
Xe3 XNed for each input column)

@ Robustness to time shifts:
Apply sub-sampling (as convolution, but We ;i contains single value)

o Also called Time Delay Neural Networks (TDNNSs)

31

Specialized Layers: 2D Convolutions

Convolutions

Linear
Pooling Convs Classifier

Input data

@ Same story than in 1D but...

in 2D

Object

Categories / Positions

C3 feature maps

“{ 2

Tat (xiy)

Fat (xi.yi)

S at (xie k)

32

Specialized Training: Non-Linear CRF (1/2)

e Sequence of T frames [z]!
e The network score for class k at the t!" frame is f([z]!, k, t,)
@ A;; transition score to jump from class k£ to class |

class 1
class 2

class 3

class 4

@ Sentence score for a class label path [z‘]lT

T

sl it 0) =" (A, o, + F(= i) 1, 0)

o Conditional likelihood by normalizing w.r.t all possible paths:

~

log p([y] |[=]{, 6) = s([@]], [v]], 6) 1ovgﬁc;ds<[w1?, i1, 6)
I

33

Specialized Training: Non-Linear CRF (2/2)

@ Normalization computed with recursive Forward algorithm:

L
51(j) = 10gAdd; |61-1(3) + Ai j + folj 21)]

Termination:

~

logadd s([z]], [j]], @) = logAdd; d7(i)
w7

o Simply backpropagate through this recursion with chain rule
e Non-linear CRFs: Graph Transformer Networks (Bottou et al., 1997)
o Compared to CRFs, we train features (network parameters 6 and

transitions scores Aj;)

o Inference: Viterbi algorithm (replace logAdd by max)

34

	Introduction: Neural Networks in 1980
	Introduction: Neural Networks in 2011
	Biological Neuron
	McCulloch and Pitts (1943)
	Perceptron: Rosenblatt (1957)
	Perceptron: Convergence (Novikoff, 1962)
	Adaline: Widrow & Hoff (1960)
	Perceptron: Margin
	Perceptron: In Practice
	Regularization
	Going Non-Linear: Kernel Perceptron (1964) (1/2)
	Going Non-Linear: Kernel Perceptron (1964) (2/2)
	Link with SVMs
	Going Non-Linear: Adding Layers (1/2)
	Going Non-Linear: Adding Layers (2/2)
	Universal Approximator (Cybenko, 1989)
	Gradient Descent (1/4)
	Gradient Descent: Learning Rate (2/4)
	Gradient Descent: Caveats (3/4)
	Gradient Descent: Tricks Of The Trade (4/4)
	Gradient Backpropagation (1/2)
	Gradient Backpropagation (2/2)
	Examples Of Modules
	Likelihood For Classification (1/2)
	Likelihood For Classification (2/2)
	Likelihood For Regression
	Unsupervised Training (1/2)
	Unsupervised Training (2/2)
	Specialized Layers: RBF
	Specialized Layers: 1D Convolutions
	Specialized Layers: 2D Convolutions
	Specialized Training: Non-Linear CRF (1/2)
	Specialized Training: Non-Linear CRF (2/2)

