
Artificial Neural Networks

Ronan Collobert
ronan@collobert.com

Introduction: Neural Networks in 1980

2

Introduction: Neural Networks in 2011

x W 1 × • tanh(•) W 2 × • score

Stack matrix-vector multiplications interleaved with non-linearity

Where does this come from?

How to train them?

Why does it generalize?

What about real-life inputs (other than vectors x)?

Any applications?

3

Biological Neuron

Dendrites connected to other neurons through synapses

Excitatory and inhibitory signals are integrated

If stimulus reaches a threshold, the neuron fires along the axon

4

McCulloch and Pitts (1943)

Neuron as linear threshold units

Binary inputs x ∈ {0, 1}d, binary output, vector of weights w ∈ Rd

f (x) =

{
1 if w · x > T
0 otherwise

A unit can perform OR and AND operations

Combine these units to represent any boolean function

How to train them?

5

Perceptron: Rosenblatt (1957)

wx+b=0

Input: retina x ∈ Rn

Associative area: any kind of (fixed) function ϕ(x) ∈ Rd

Decision function:

f (x) =

{
1 if w · ϕ(x) > 0
−1 otherwise

Training: minimize
∑
tmax(0,−ytwt · ϕ(xt)), given (xt, yt) ∈ Rd × {−1, 1}

wt+1 = wt +

{
ytϕ(xt) if ytw · ϕ(xt) ≤ 0
0 otherwise

6

Perceptron: Convergence (Novikoff, 1962)

Assuming classes

are separable

u x
 =

 1

u x
 =

 0

u x
 =

 −
1

2/||u||

R

Cauchy-Schwarz (ρmax
∆
= 2/||u||)...

u · wt ≤ ||u|| ||wt||
≤ 2

ρmax
||wt||

u defines maximum

margin separating hyperplane...

u · wt = u · wt−1 + yt u · xt
≥ u · wt−1 + 1

≥ t

When we do a “mistake”...

||wt||2 = ||wt−1||2 + 2ytwt−1 · xt + ||xt||2
≤ ||wt−1||2 + R2

≤ t R2

We get:
t ≤ 4R2

ρ2
max

7

Adaline: Widrow & Hoff (1960)

Problems of the Perceptron:

? Separable case:

does not find a hyperplane equidistant from the two classes

? Non-separable case: does not converge

Adaline (Widrow & Hoff, 1960) minimizes

1

2

∑
t

(yt − wt · ϕ(xt))2

Delta rule:

wt+1 = wt + λ(yt − wt · xt)xt

8

Perceptron: Margin

See (Duda & Hart, 1973), (Krauth & Mézard, 1987), (Collobert, 2004)

Poor generalization capabilities in practice

No control on the margin:

ρ =
2

||wT || ≥
ρmax
R2

Margin Perceptron: minimize
∑
tmax(0, 1− ytwt · ϕ(xt))

wt+1 = wt + λ

{
ytϕ(xt) if ytw · ϕ(xt) ≤ 1
0 otherwise

Finite number of updates:

t ≤ 4

ρ2
max

(
2

λ
+ R2)

Control on the margin:

ρ ≥ ρmax
1

2 + R2 λ

9

Perceptron: In Practice

Original Perceptron (10/40/60 iter)

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

Margin Perceptron (10/120/2000 iter)

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

10

Regularization

In many machine-learning algorithms (including SVMs!)

early stopping (on a validation set) is a good idea

From (Prechelt, 1997)

Weight decay

µ||w||2 + max(0, 1− ytwt · ϕ(xt))

This is the SVM cost!

11

Going Non-Linear: Kernel Perceptron (1964) (1/2)

Consider the decision function

f (x) =

{
1 if w · ϕ(x) > 0
−1 otherwise

Non-linearity achieved by hand-crafting a non-linear ϕ(·)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−→ ϕ(·) −→

0

0.5

1

1.5

2

2.5

3

−4

−3

−2

−1

0

1

0

0.5

1

1.5

2

2.5

3

Here ϕ(x) = ϕ(x1, x2) = (x2
1,
√

2x1 x2, x
2
2)

Problem: the dot product is slow to compute in high dimensions

12

Going Non-Linear: Kernel Perceptron (1964) (2/2)

See (Aizerman, Braverman and Rozonoer, 1964)

Consider now the update

wt+1 = wt +

{
ytϕ(xt) if ytw · ϕ(xt) ≤ 0
0 otherwise

Decision function at the tth example can be written as:

f t(x) =
∑

t∈ “updated”

ytϕ(xt) · ϕ(x)

Can use a kernel instead

K(x, xt) = ϕ(xt) · ϕ(x)

E.g., for ϕ(x) = ϕ(x1, x2) = (x2
1,
√

2x1 x2, x
2
2) a possible kernel is

K(x, xt) = (x · xt)2

K(·, ·) is a kernel if ∀g

such that

∫
g(x)2dx <∞ then

∫
K(x, y) g(x) g(y) dx dy ≥ 0

13

Link with SVMs

Support Vector Machines unify nicely all the previous concepts

? Early versions: (Vapnik & Lerner, 1963), (Vapnik, 1979)

? Perceptron + Margin + Regularization

= soft-margin Support Vector Machines

(Cortes & Vapnik, 1995)

? Perceptron + Margin + Regularization + Kernel

= non-linear Support Vector Machines

(Hard-margin SVMs: Boser, Guyon & Vapnik, 1992)

For linear SVM, primal optimization is ok

For non-linear kernels, sparsity issues with gradient descent in the primal

−→ efficient algorithms exist in the dual, or consider a budget

see SVM course

14

Going Non-Linear: Adding Layers (1/2)

How to train a “good” ϕ(·)?
Neocognitron: (Fukushima, 1980)

15

Going Non-Linear: Adding Layers (2/2)

Madaline: (Winter & Widrow, 1988)

Multi-Layer Perceptron

x W 1 × • tanh(•) W 2 × • score

Training solution: gradient descent

16

Universal Approximator (Cybenko, 1989)

Any function

g : Rd −→ R

can be approximated (on a compact) by a two-layer neural network

x W 1 × • tanh(•) W 2 × • score

Cybenko used

? The Hahn Banach theorem

? The Riesz representation theorem

17

Gradient Descent (1/4)

Given a set of examples (xt, yt) ∈ Rd × N, t = 1 . . . T ,

we want to minimize

C(θ) =
T∑
t=1

c(fθ(x
t), yt)

Batch gradient descent

θ ←− θ − λ∂C(θ)

∂θ

? Update after seeing all examples

? Variants: see your optimization book (Conjugate gradient, BFGS...)

? Slow in practice

Take advantage of redundency: stochastic gradient descent

Pick a random example t

θ ←− θ − λ∂c(fθ(x
t), yt)

∂θ

? Update after seeing one example

18

Gradient Descent: Learning Rate (2/4)

The learning rate must be chosen carefully

Good idea to use a validation set

From (LeCun, 2006)
19

Gradient Descent: Caveats (3/4)

Consider the network

x w1 × • tanh(•) w2 × • log(1 + e−y•)

With one example (x = 1, y = 1) and one hidden unit!

No progress in some directions

Saddle points, plateaux..

20

Gradient Descent: Tricks Of The Trade (4/4)

Initialize properly the weights

? Not too big: tanh(•) saturates

? Not too small: all units would do the same!

Normalize properly your data (mean/variance)

? Again, you want to be in the right part of the tanh(•)

Use a second order approach (H is the Hessian)

C(θ + ε) ≈ C(θ) +
∂C(θ)

∂θ
ε + εTH(θ)ε

? Costly with full Hessian, consider only the diagonal

? Estimated on a training subset

? Be sure it is positive definite!

? Can be “backpropagated” as the gradient

? Update with

λ =
γ

∂2C
∂θ2k

+ µ
∀k

21

Gradient Backpropagation (1/2)

In the neural network field: (Rumelhart, Hinton, Williams, 1986)

However, previous possible references exist,
including (Leibniz, 1675) and (Newton, 1687)

View the network+loss as a “stack” of layers

x f1(•) f2(•) f3(•) f4(•)

Minimize the score by gradient descent

f (x) = fL(fL−1(. . . f1(x)) −→ How to compute ∂f
∂wl

∀l ??

For e.g., in the Adaline L = 2

x w1 × • 1
2 (y − •)

? f1(x) = w1 · x
? f2(f1) = 1

2(y − f1)2

∂f

∂w1
=

∂f2

∂f1︸︷︷︸
=y−f1

∂f1

∂w1︸︷︷︸
=x

chain rule

22

Gradient Backpropagation (2/2)

x f1(•) f2(•) f3(•) f4(•)

Brutal way:

∂f

∂wl
=

∂fL
∂fL−1

∂fL−1

∂fL−2
· · · ∂fl+1

∂fl

∂fl
∂wl

In the backprop way, each module fl()
? Receive the gradient w.r.t. its own outputs fl
? Computes the gradient w.r.t. its own input fl−1 (backward)
? Computes the gradient w.r.t. its own parameters wl (if any)

∂f

∂fl−1
=
∂f

∂fl

∂fl
∂fl−1

∂f

∂wl
=
∂f

∂fl

∂fl
∂wl

Often, gradients are efficiently computed using outputs of the module
Do a forward before each backward

23

Examples Of Modules

For simplicity, we denote

? x the input of a module

? z target of a loss module

? y the output of a module fl(x)

? ỹ the gradient w.r.t. the output of each module

Module Forward Backward Gradient

Linear y = W x WT ỹ ỹ xT

MSE Loss y = 1
2 (x− z)2 x− z

Tanh y = tanh(x) ỹ (1− y2)

Sigmoid y = 1/(1 + e−x) ỹ (1− y) y

Perceptron Loss y = max(0, −z x) −1z·x≤0

See Lush, Torch5, Theano...
24

Likelihood For Classification (1/2)

Given a set of examples (xt, yt) ∈ Rd × N, t = 1 . . . T

we want to maximize the (log-)likelihood

log
T∏
t=1

p(yt|xt) =
T∑
t=1

log p(yt|xt)

The network outputs a score fy(x) per class y

Interpret scores as conditional probabilities using a softmax:

p(y|x) =
efy(x)∑
i e
fi(x)

In practice we prefer log-probabilites:

log p(y|x) = fy(x)− log

∑
i

efi(x)



25

Likelihood For Classification (2/2)

Assume only two class problems, y ∈ {−1, +1}

log p(y = 1|x) = log
ef1(x)

ef1(x) + ef−1(x)
= − log(1 + e−y (f1(x)−f−1(x)))

log p(y = −1|x) = log
ef−1(x)

ef1(x) + ef−1(x)
= − log(1 + e−y (f1(x)−f−1(x)))

Note: only one network output needed

Taking z = y (f1(x)− f−1(x)),
z 7→ log(1 + e−z) is a smooth version of SVM cost

−4 −2 0 2 4 6 8
0

1

2

3

4

5

z

log(1+exp(−z))
|1−z|

+

26

Likelihood For Regression

The target variables y ∈ R are now continuous

We often consider

y|x ∼ N (f (x), σ2)

In this case,

log p(y|x) = − 1

2σ2
||y − f (x)||2 + cste

Equivalent to Mean Squared Error (MSE) criterion...

Not great to classification

27

Unsupervised Training (1/2)

How to leverage unlabeled data (when there is no y)?

Deep architectures are hard to train: how to pretrain each layer?

“Auto-encoder/bottleneck” network: try to reconstruct the input

W ●

tanh(●)

tanh(●)

W ●

W ●

x

1

2

3

Caveats:

? PCA if no W 2 layer (Bourlard & Kamp, 1988)

? It is a bottleneck mapping...

28

Unsupervised Training (2/2)

W ●

tanh(●)

tanh(●)

W ●

W ●

x

1

2

3

Possible improvements:

? No W 2 layer, W 3 =
[
W 1
]T

(Bengio et al., 2006)

? Inject noise in x, try to reconstruct the true x (Bengio et al., 2008)

? Impose sparsity constraints

on the projection (Kavukcuoglu et al., 2008)

29

Specialized Layers: RBF

x RBFW 1 W 2 × •

A Radial Basis Function (RBF) layer is defined by:

f1,i(x) = e
−
||x−W1

•,i||
2

2σ2

Better to find parametrization of σ such that it is strictly positive:

σ = σ̃ + θ

Gradient is zero if W 1 colums are far from training examples

−→ Initialize with K-Means

30

Specialized Layers: 1D Convolutions

x Conv 1D Subsampl. 1D tanh(•) Conv 1D tanh(•) W 2 × •

W• W• W• W•

Weights are “shared” through time

X = (X• 1, X• 2 · · ·) input (matrix)

W ×

X• 1
X• 2
X• 3

X• 2
X• 3
X• 4

· · ·

 convolution (local embedding

for each input column)

Robustness to time shifts:
Apply sub-sampling (as convolution, but W•,i contains single value)

Also called Time Delay Neural Networks (TDNNs)

31

Specialized Layers: 2D Convolutions

W●1

W●2
W●3

Same story than in 1D but... in 2D

32

Specialized Training: Non-Linear CRF (1/2)

Sequence of T frames [x]T1
The network score for class k at the tth frame is f ([x]T1 , k, t, θ)

Akl transition score to jump from class k to class l

x•,1 x•,2 x•,3 x•,4 x•,5 x•,6

class 1

class 2

class 3

class 4

...

Sentence score for a class label path [i]T1

s([x]T1 , [i]T1 , θ̃) =
T∑
t=1

(
A[i]t−1[i]t

+ f ([x]T1 , [i]t, t, θ)
)

Conditional likelihood by normalizing w.r.t all possible paths:

log p([y]T1 | [x]T1 , θ̃) = s([x]T1 , [y]T1 , θ̃)− logadd
∀[j]T1

s([x]T1 , [j]T1 , θ̃)

33

Specialized Training: Non-Linear CRF (2/2)

Normalization computed with recursive Forward algorithm:

δt(j) = logAddi
[
δt−1(i) + Ai,j + fθ(j, x

T
1 , t)

]
Termination:

logadd
∀[j]T1

s([x]T1 , [j]T1 , θ̃) = logAddi δT (i)

Simply backpropagate through this recursion with chain rule

Non-linear CRFs: Graph Transformer Networks (Bottou et al., 1997)

Compared to CRFs, we train features (network parameters θ and

transitions scores Akl)

Inference: Viterbi algorithm (replace logAdd by max)

34

	Introduction: Neural Networks in 1980
	Introduction: Neural Networks in 2011
	Biological Neuron
	McCulloch and Pitts (1943)
	Perceptron: Rosenblatt (1957)
	Perceptron: Convergence (Novikoff, 1962)
	Adaline: Widrow & Hoff (1960)
	Perceptron: Margin
	Perceptron: In Practice
	Regularization
	Going Non-Linear: Kernel Perceptron (1964) (1/2)
	Going Non-Linear: Kernel Perceptron (1964) (2/2)
	Link with SVMs
	Going Non-Linear: Adding Layers (1/2)
	Going Non-Linear: Adding Layers (2/2)
	Universal Approximator (Cybenko, 1989)
	Gradient Descent (1/4)
	Gradient Descent: Learning Rate (2/4)
	Gradient Descent: Caveats (3/4)
	Gradient Descent: Tricks Of The Trade (4/4)
	Gradient Backpropagation (1/2)
	Gradient Backpropagation (2/2)
	Examples Of Modules
	Likelihood For Classification (1/2)
	Likelihood For Classification (2/2)
	Likelihood For Regression
	Unsupervised Training (1/2)
	Unsupervised Training (2/2)
	Specialized Layers: RBF
	Specialized Layers: 1D Convolutions
	Specialized Layers: 2D Convolutions
	Specialized Training: Non-Linear CRF (1/2)
	Specialized Training: Non-Linear CRF (2/2)

