Artificial Neural Networks

Ronan Collobert

ronan@collobert.com

Introduction: Neural Networks in 1980

Input Nodes

Figure 2 Hierarchical neural network strusture

Introduction: Neural Networks in 2011

- Stack matrix-vector multiplications interleaved with non-linearity
- Where does this come from?
- How to train them?
- Why does it generalize?
- What about real-life inputs (other than vectors x)?
- Any applications?

Biological Neuron

- Dendrites connected to other neurons through synapses
- Excitatory and inhibitory signals are integrated
- If stimulus reaches a threshold, the neuron fires along the axon

McCulloch and Pitts (1943)

- Neuron as linear threshold units

Inputs Weights

- Binary inputs $x \in\{0,1\}^{d}$, binary output, vector of weights $w \in \mathbb{R}^{d}$

$$
f(x)= \begin{cases}1 & \text { if } w \cdot x>T \\ 0 & \text { otherwise }\end{cases}
$$

- A unit can perform OR and AND operations
- Combine these units to represent any boolean function
- How to train them?

Perceptron: Rosenblatt (1957)

- Input: retina $x \in \mathbb{R}^{n}$
- Associative area: any kind of (fixed) function $\varphi(x) \in \mathbb{R}^{d}$
- Decision function:

$$
f(x)= \begin{cases}1 & \text { if } w \cdot \varphi(x)>0 \\ -1 & \text { otherwise }\end{cases}
$$

- Training: minimize $\sum_{t} \max \left(0,-y^{t} w^{t} \cdot \varphi\left(x^{t}\right)\right)$, given $\left(x^{t}, y^{t}\right) \in \mathbb{R}^{d} \times\{-1,1\}$

$$
w^{t+1}=w^{t}+ \begin{cases}y^{t} \varphi\left(x^{t}\right) & \text { if } y^{t} w \cdot \varphi\left(x^{t}\right) \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Perceptron: Convergence (Novikoff, 1962)

- Cauchy-Schwarz $\left(\rho_{\max } \triangleq 2 /\|u\|\right) \ldots$

Assuming classes are separable

$$
\begin{aligned}
u \cdot w^{t} & \leq\|u\|\left\|w^{t}\right\| \\
& \leq \frac{2}{\rho_{\max }}\left\|w^{t}\right\|
\end{aligned}
$$

- u defines maximum margin separating hyperplane...

$$
\begin{aligned}
u \cdot w^{t} & =u \cdot w^{t-1}+y^{t} u \cdot x^{t} \\
& \geq u \cdot w^{t-1}+1 \\
& \geq t
\end{aligned}
$$

- When we do a "mistake"...

$$
\begin{aligned}
\left\|w^{t}\right\|^{2} & =\left\|w^{t-1}\right\|^{2}+2 y^{t} w^{t-1} \cdot x^{t}+\left\|x^{t}\right\|^{2} \\
& \leq\left\|w^{t-1}\right\|^{2}+R^{2} \\
& \leq t R^{2}
\end{aligned}
$$

- We get:

$$
t \leq \frac{4 R^{2}}{\rho_{\max }^{2}}
$$

Adaline: Widrow \& Hoff (1960)

- Problems of the Perceptron:
* Separable case:
does not find a hyperplane equidistant from the two classes
* Non-separable case: does not converge
- Adaline (Widrow \& Hoff, 1960) minimizes

$$
\frac{1}{2} \sum_{t}\left(y^{t}-w^{t} \cdot \varphi\left(x^{t}\right)\right)^{2}
$$

- Delta rule:

$$
w^{t+1}=w^{t}+\lambda\left(y^{t}-w^{t} \cdot x^{t}\right) x^{t}
$$

Perceptron: Margin
See (Duda \& Hart, 1973), (Krauth \& Mézard, 1987), (Collobert, 2004)

- Poor generalization capabilities in practice
- No control on the margin:

$$
\rho=\frac{2}{\left\|w^{T}\right\|} \geq \frac{\rho_{\max }}{R^{2}}
$$

- Margin Perceptron: minimize $\sum_{t} \max \left(0,1-y^{t} w^{t} \cdot \varphi\left(x^{t}\right)\right)$

$$
w^{t+1}=w^{t}+\lambda \begin{cases}y^{t} \varphi\left(x^{t}\right) & \text { if } y^{t} w \cdot \varphi\left(x^{t}\right) \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Finite number of updates:

$$
t \leq \frac{4}{\rho_{\max }^{2}}\left(\frac{2}{\lambda}+R^{2}\right)
$$

- Control on the margin:

$$
\rho \geq \rho_{\max } \frac{1}{2+R^{2} \lambda}
$$

Perceptron: In Practice

Original Perceptron (10/40/60 iter)

Margin Perceptron (10/120/2000 iter)

Regularization

- In many machine-learning algorithms (including SVMs!) early stopping (on a validation set) is a good idea

From (Prechelt, 1997)

- Weight decay

$$
\mu\|w\|^{2}+\max \left(0,1-y^{t} w^{t} \cdot \varphi\left(x^{t}\right)\right)
$$

This is the SVM cost!

Going Non-Linear: Kernel Perceptron (1964)

- Consider the decision function

$$
f(x)= \begin{cases}1 & \text { if } w \cdot \varphi(x)>0 \\ -1 & \text { otherwise }\end{cases}
$$

- Non-linearity achieved by hand-crafting a non-linear $\varphi(\cdot)$

- Here $\varphi(x)=\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$
- Problem: the dot product is slow to compute in high dimensions

Going Non-Linear: Kernel Perceptron (1964)

- See (Aizerman, Braverman and Rozonoer, 1964)
- Consider now the update

$$
w^{t+1}=w^{t}+ \begin{cases}y^{t} \varphi\left(x^{t}\right) & \text { if } y^{t} w \cdot \varphi\left(x^{t}\right) \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Decision function at the $t^{\text {th }}$ example can be written as:

$$
f^{t}(x)=\sum_{t \in \text { "updated" }} y^{t} \varphi\left(x^{t}\right) \cdot \varphi(x)
$$

- Can use a kernel instead

$$
K\left(x, x^{t}\right)=\varphi\left(x^{t}\right) \cdot \varphi(x)
$$

- E.g., for $\varphi(x)=\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$ a possible kernel is

$$
K\left(x, x^{t}\right)=\left(x \cdot x^{t}\right)^{2}
$$

- $K(\cdot, \cdot)$ is a kernel if $\forall g$

$$
\text { such that } \int g(x)^{2} d x<\infty \quad \text { then } \quad \int K(x, y) g(x) g(y) d x d y \geq 0
$$

Link with SVMs

- Support Vector Machines unify nicely all the previous concepts
* Early versions: (Vapnik \& Lerner, 1963), (Vapnik, 1979)
* Perceptron + Margin + Regularization = soft-margin Support Vector Machines (Cortes \& Vapnik, 1995)
* Perceptron + Margin + Regularization + Kernel
= non-linear Support Vector Machines (Hard-margin SVMs: Boser, Guyon \& Vapnik, 1992)
- For linear SVM, primal optimization is ok
- For non-linear kernels, sparsity issues with gradient descent in the primal
\longrightarrow efficient algorithms exist in the dual, or consider a budget
- see SVM course

Going Non-Linear: Adding Layers

- How to train a "good" $\varphi(\cdot)$?
- Neocognitron: (Fukushima, 1980)

Going Non-Linear: Adding Layers

- Madaline: (Winter \& Widrow, 1988)

Figure 1: Layered feed-forward ADALINE network.

- Multi-Layer Perceptron

- Training solution: gradient descent

Universal Approximator (Cybenko, 1989)

- Any function

$$
g: \mathbb{R}^{d} \longrightarrow \mathbb{R}
$$

can be approximated (on a compact) by a two-layer neural network

- Cybenko used
* The Hahn Banach theorem
* The Riesz representation theorem
- Given a set of examples $\left(x^{t}, y^{t}\right) \in \mathbb{R}^{d} \times \mathbb{N}, t=1 \ldots T$, we want to minimize

$$
C(\theta)=\sum_{t=1}^{T} c\left(f_{\theta}\left(x^{t}\right), y^{t}\right)
$$

- Batch gradient descent

$$
\theta \longleftarrow \theta-\lambda \frac{\partial C(\theta)}{\partial \theta}
$$

* Update after seeing all examples
* Variants: see your optimization book (Conjugate gradient, BFGS...)
* Slow in practice
- Take advantage of redundency: stochastic gradient descent Pick a random example t

$$
\theta \longleftarrow \theta-\lambda \frac{\partial c\left(f_{\theta}\left(x^{t}\right), y^{t}\right)}{\partial \theta}
$$

* Update after seeing one example

Gradient Descent: Learning Rate

- The learning rate must be chosen carefully
- Good idea to use a validation set

$\eta>2 \eta_{\text {opt }}$

From (LeCun, 2006)

Gradient Descent: Caveats

- Consider the network

$$
x \rightarrow w^{1} \times \bullet \rightarrow \tanh (\bullet) \rightarrow w^{2} \times \bullet \rightarrow \log \left(1+e^{-y^{\bullet}}\right)
$$

With one example $(x=1, y=1)$ and one hidden unit!

- No progress in some directions
- Saddle points, plateaux..

Gradient Descent: Tricks Of The Trade

- Initialize properly the weights
* Not too big: $\tanh (\bullet)$ saturates
* Not too small: all units would do the same!
- Normalize properly your data (mean/variance)
* Again, you want to be in the right part of the $\tanh (\bullet)$
- Use a second order approach (H is the Hessian)

$$
C(\theta+\epsilon) \approx C(\theta)+\frac{\partial C(\theta)}{\partial \theta} \epsilon+\epsilon^{\mathrm{T}} H(\theta) \epsilon
$$

* Costly with full Hessian, consider only the diagonal
* Estimated on a training subset
* Be sure it is positive definite!
* Can be "backpropagated" as the gradient
* Update with

$$
\lambda=\frac{\gamma}{\frac{\partial^{2} C}{\partial \theta_{k}^{2}}+\mu} \quad \forall k
$$

Gradient Backpropagation

- In the neural network field: (Rumelhart, Hinton, Williams, 1986)
- However, previous possible references exist, including (Leibniz, 1675) and (Newton, 1687)
- View the network+loss as a "stack" of layers

- Minimize the score by gradient descent

$$
f(x)=f_{L}\left(f_{L-1}\left(\ldots f_{1}(x)\right) \quad \longrightarrow \quad \text { How to compute } \frac{\partial f}{\partial w^{l}} \quad \forall l \quad ? ?\right.
$$

- For e.g., in the Adaline $L=2$

* $f_{1}(x)=w_{1} \cdot x$
* $f_{2}\left(f_{1}\right)=\frac{1}{2}\left(y-f_{1}\right)^{2}$

$$
\frac{\partial f}{\partial w_{1}}=\underbrace{\frac{\partial f_{2}}{\partial f_{1}}}_{=y-f_{1}} \underbrace{\frac{\partial f_{1}}{\partial w^{1}}}_{=x}
$$

Gradient Backpropagation

- Brutal way:

$$
\frac{\partial f}{\partial w^{l}}=\frac{\partial f_{L}}{\partial f_{L-1}} \frac{\partial f_{L-1}}{\partial f_{L-2}} \cdots \frac{\partial f_{l+1}}{\partial f_{l}} \frac{\partial f_{l}}{\partial w^{l}}
$$

- In the backprop way, each module $f_{l}()$
* Receive the gradient w.r.t. its own outputs f_{l}
* Computes the gradient w.r.t. its own input f_{l-1} (backward)
* Computes the gradient w.r.t. its own parameters w^{l} (if any)

$$
\begin{aligned}
\frac{\partial f}{\partial f_{l-1}} & =\frac{\partial f}{\partial f_{l}} \frac{\partial f_{l}}{\partial f_{l-1}} \\
\frac{\partial f}{\partial w^{l}} & =\frac{\partial f}{\partial f_{l}} \frac{\partial f_{l}}{\partial w^{l}}
\end{aligned}
$$

- Often, gradients are efficiently computed using outputs of the module Do a forward before each backward

Examples Of Modules

- For simplicity, we denote
* x the input of a module
* z target of a loss module
* y the output of a module $f_{l}(x)$
* \tilde{y} the gradient w.r.t. the output of each module

Module	Forward	Backward	Gradient
Linear	$y=W x$	$W^{\mathrm{T}} \tilde{y}$	$\tilde{y} x^{\mathrm{T}}$
MSE Loss	$y=\frac{1}{2}(x-z)^{2}$	$x-z$	
Tanh	$y=\tanh (x)$	$\tilde{y}\left(1-y^{2}\right)$	
Sigmoid	$y=1 /\left(1+e^{-x}\right)$	$\tilde{y}(1-y) y$	
Perceptron Loss $y=\max (0,-z x)$	$-\mathbf{1}_{z \cdot x \leq 0}$		

See Lush, Torch5, Theano...

- Given a set of examples $\left(x^{t}, y^{t}\right) \in \mathbb{R}^{d} \times \mathbb{N}, t=1 \ldots T$ we want to maximize the (log-)likelihood

$$
\log \prod_{t=1}^{T} p\left(y^{t} \mid x^{t}\right)=\sum_{t=1}^{T} \log p\left(y^{t} \mid x^{t}\right)
$$

- The network outputs a score $f_{y}(x)$ per class y
- Interpret scores as conditional probabilities using a softmax:

$$
p(y \mid x)=\frac{e^{f_{y}(x)}}{\sum_{i} e^{f_{i}(x)}}
$$

- In practice we prefer log-probabilites:

$$
\log p(y \mid x)=f_{y}(x)-\log \left[\sum_{i} e^{f_{i}(x)}\right]
$$

Likelihood For Classification

- Assume only two class problems, $y \in\{-1,+1\}$

$$
\begin{gathered}
\log p(y=1 \mid x)=\log \frac{e^{f_{1}(x)}}{e^{f_{1}(x)}+e^{f_{-1}(x)}}=-\log \left(1+e^{-y\left(f_{1}(x)-f_{-1}(x)\right)}\right) \\
\log p(y=-1 \mid x)=\log \frac{e^{f_{-1}(x)}}{e^{f_{1}(x)}+e^{f_{-1}(x)}}=-\log \left(1+e^{-y\left(f_{1}(x)-f_{-1}(x)\right)}\right)
\end{gathered}
$$

- Note: only one network output needed
- Taking $z=y\left(f_{1}(x)-f_{-1}(x)\right)$,
$z \mapsto \log \left(1+e^{-z}\right)$ is a smooth version of SVM cost

Likelihood For Regression

- The target variables $y \in \mathbb{R}$ are now continuous
- We often consider

$$
y \mid x \quad \sim \mathcal{N}\left(f(x), \sigma^{2}\right)
$$

- In this case,

$$
\log p(y \mid x)=-\frac{1}{2 \sigma^{2}}\|y-f(x)\|^{2}+\text { cste }
$$

- Equivalent to Mean Squared Error (MSE) criterion...
- Not great to classification
- How to leverage unlabeled data (when there is no y)?
- Deep architectures are hard to train: how to pretrain each layer?
- "Auto-encoder/bottleneck" network: try to reconstruct the input

- Caveats:
* PCA if no W^{2} layer (Bourlard \& Kamp, 1988)
* It is a bottleneck mapping...

Unsupervised Training

- Possible improvements:
* No W^{2} layer, $W^{3}=\left[W^{1}\right]^{\mathrm{T}}$ (Bengio et al., 2006)
* Inject noise in x, try to reconstruct the true x (Bengio et al., 2008)
* Impose sparsity constraints
on the projection (Kavukcuoglu et al., 2008)

Specialized Layers: RBF

$$
x \rightarrow \mathrm{RBF}_{W^{1}} \rightarrow W^{2} \times \bullet
$$

- A Radial Basis Function (RBF) layer is defined by:

$$
f_{1, i}(x)=e^{-\frac{\| x-W_{\bullet}^{1}, i l}{} \|^{2}} 2 \sigma^{2}
$$

- Better to find parametrization of σ such that it is strictly positive:

$$
\sigma=\tilde{\sigma}+\theta
$$

- Gradient is zero if W^{1} colums are far from training examples
\longrightarrow Initialize with K-Means

Specialized Layers: 1D Convolutions

- Weights are "shared" through time

$$
\begin{array}{l|l}
X=\left(X_{\bullet 1}, X_{\bullet 2} \cdots\right) & \text { input (matrix) } \\
W \times\left(\begin{array}{ll}
X_{\bullet} & X_{\bullet} \\
X_{\bullet 2} & X_{\bullet} \\
X_{\bullet} & X_{\bullet}
\end{array}\right) & \begin{array}{l}
\text { convolution (local embedding } \\
\text { for each input column) }
\end{array}
\end{array}
$$

- Robustness to time shifts:

Apply sub-sampling (as convolution, but $W_{\bullet, i}$ contains single value)

- Also called Time Delay Neural Networks (TDNNs)

Specialized Layers: 2D Convolutions

- Same story than in 1D but... in 2D

Specialized Training: Non-Linear CRF

- Sequence of T frames $[\boldsymbol{x}]_{1}^{T}$
- The network score for class k at the $t^{\text {th }}$ frame is $f\left([\boldsymbol{x}]_{1}^{T}, k, t, \boldsymbol{\theta}\right)$
- $A_{k l}$ transition score to jump from class k to class l

- Sentence score for a class label path $[i]_{1}^{T}$

$$
s\left([\boldsymbol{x}]_{1}^{T},[i]_{1}^{T}, \tilde{\boldsymbol{\theta}}\right)=\sum_{t=1}^{T}\left(A_{[i]_{t-1}[i]_{t}}+f\left([\boldsymbol{x}]_{1}^{T},[i]_{t}, t, \boldsymbol{\theta}\right)\right)
$$

- Conditional likelihood by normalizing w.r.t all possible paths:

$$
\log p\left([y]_{1}^{T} \mid[\boldsymbol{x}]_{1}^{T}, \tilde{\boldsymbol{\theta}}\right)=s\left([\boldsymbol{x}]_{1}^{T},[y]_{1}^{T}, \tilde{\boldsymbol{\theta}}\right)-\underset{\forall[j]_{1}^{T}}{\operatorname{logadd}} s\left([\boldsymbol{x}]_{1}^{T},[j]_{1}^{T}, \tilde{\boldsymbol{\theta}}\right)
$$

Specialized Training: Non-Linear CRF

- Normalization computed with recursive Forward algorithm:

$$
\delta_{t}(j)=\log \operatorname{Add}_{i}\left[\delta_{t-1}(i)+A_{i, j}+f_{\theta}\left(j, x_{1}^{T}, t\right)\right]
$$

Termination:

$$
\underset{\forall[j]_{1}^{T}}{\operatorname{logadd}} s\left([\boldsymbol{x}]_{1}^{T},[j]_{1}^{T}, \tilde{\boldsymbol{\theta}}\right)=\log \operatorname{Add}_{i} \delta_{T}(i)
$$

- Simply backpropagate through this recursion with chain rule
- Non-linear CRFs: Graph Transformer Networks (Bottou et al., 1997)
- Compared to CRFs, we train features (network parameters $\boldsymbol{\theta}$ and transitions scores $A_{k l}$)
- Inference: Viterbi algorithm (replace logAdd by max)

