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Abstract
In this paper, we propose a novel approach for weakly-

supervised word recognition. Most state of the art automatic
speech recognition systems are based on frame-level labels ob-
tained through forced alignments or through a sequential loss.
Recently, weakly-supervised trained models have been pro-
posed in vision, that can learn which part of the input is relevant
for classifying a given pattern [1]. Our system is composed of a
convolutional neural network and a temporal score aggregation
mechanism. For each sentence, it is trained using as supervi-
sion only some of the words (most frequent) that are present
in a given sentence, without knowing their order nor quantity.
We show that our proposed system is able to jointly classify
and localise words. We also evaluate the system on a keyword
spotting task, and show that it can yield similar performance to
strong supervised HMM/GMM baseline.
Index Terms: convolutional neural networks, attention-based
models, keyword spotting, weak supervision, acoustic models

1. Introduction
Recent advances in machine learning (“deep learning”) have en-
abled training systems in an end-to-end manner. This has been
proposed in natural language processing [2] or image recog-
nition [3]. In speech recognition, early works have investi-
gated global training of hybrid HMM/ANN (artificial neural
networks) systems [4]. More recently, CRF/ANN (conditional
random fields) based automatic speech recognition (ASR) sys-
tems have been proposed [5, 6, 7]. End-to-end training has
also been applied to phoneme recognition [8, 9, 10]. State
of the art supervised ASR systems for doing speech transcrip-
tion use complete sentence transcriptions too. They either use
force-alignment [11] (e.g. through an HMM/GMM) to recover
the segmentation, or they use a sequence-based discriminative
loss as connectionist temporal classification (CTC) [12, 13].
In both cases they train their acoustic model (that goes from
sound/features to discrete units) to maximize the classification
in phonemes/letters (or words), that they can time-align in the
sequence.

There is a growing interest in applying the deep learning
approach to weakly-supervised systems. At training time, these
pattern recognition systems have only access to the “presence
or absence” information of a pattern in a given input, and learn
which part of the input is relevant for classifying the pattern. In
computer vision, this approach has been successfully applied to
image segmentation [1]. Attention-based recurrent models have
also been proposed in computer vision [14], machine transla-
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tion [15] and phoneme recognition [16]. In the speech domain
however, it was always assumed that either the segmentation of
the training data or at least the sequence information (order of
the words) was provided.

We present a novel approach for weakly supervised word
recognition. Our system is trained on a sentence basis, with
only the speech signal (Mel filterbanks) and the presence or ab-
sence of words as a bag-of-word input. It outputs the words
that are in the sentence, along with their position and (time-
aligned) segmentation. The system is composed of two stages:
a sequence modeling stage, based on a convolutional neural net-
work (CNN) [17], which performs the acoustic modeling and
outputs a score for each frame, for each word of the vocabulary.
The second stage aggregates the score computed by the CNN
along the temporal dimension. The output is thus a score for
each word, for the whole sentence. During training, the network
is able to learn the localisation of words by back-propagating
through the aggregation. Such a model can be useful whenever
one has access to speech with keyword annotations but not the
full transcription (as for hotlines/voice user interfaces). This is
also a step towards less supervised automatic speech recogni-
tion (ASR) systems that are trained end-to-end.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the proposed system. Section 3 presents the ex-
perimental setup, Section 4 presents the word localisation stud-
ies (in which we compare our model with the output of force
alignment) and Section 5 presents a keyword spotting evalua-
tion. Section 6 concludes the paper

2. Proposed approach
2.1. Overview

The proposed approach is a weakly-supervised multi-word de-
tection system. It takes a feature sequence X as input, and out-
puts the probability of each word w in the dictionaryW being
present in the utterance. The main novelty of the proposed ap-
proach is that the system is trained in a weekly-supervised man-
ner, using bag-of-words labels, and is able to learn the words
localisation is the utterance.

2.1.1. Bag-of-word labels

In this work, we use Bag-of-words (BoW) labels. Based on the
bag-of-word model used in natural language processing, these
labels denote, for a given utterance, the “presence or absence”
information of each word in the dictionary. They are extracted
from the transcription, and are represented by a binary vector,
of dimension equal to the dictionary size. Note that such labels
do not take into account the words order nor quantity.

For example, given the transcription “John likes to watch
movies. Mary enjoys movies too.”, the resulting BoW labels
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Figure 1: Illustration of the proposed system. The gray input
frames represent the padding.

are: {“enjoys”,“likes”, “movies”,“to”, “too”,“watch” }, assum-
ing that ”John” and ”Mary” are not in the dictionary. The binary
label vector for this utterance can then be built, setting to 1 the
entries corresponding to the indices of the words, and−1 all the
other entries of the vocabulary.

2.2. Two stages CNN-based system

The proposed system is composed of two stages: the sequence
modeling stage processes a sequence of features, and outputs
a score for each word, for each frame. The second stage per-
forms the aggregation of the scores along the temporal dimen-
sion, and outputs a score for each word, for the whole utterance.
Both stages are trained jointly. The proposed architecture is pre-
sented in Figure 1.

2.2.1. Sequence modeling stage

The sequence modeling stage performs the acoustic model of a
speech utterance. The network is given a sequence of features
X = [x1 x2 . . . xT ], where xt stand for the frame at time
t. The output is a score swt (X) for each frame t and each word
w ∈ W . This score is referred to as the localisation score.

This stage is implemented by a succession of n convolution
layers. A convolutional layer applies the same transformation
over each successive (or interspaced by dW frames) windows
of kW frames. Formally, the transformation at frame t is writ-
ten as:

C(X) = h(M [xt−(kW−1)/2 · · · xt+(kW−1)/2]
T ) (1)

where M is a dout × din matrix of parameters, din denotes
the input dimension, dout denotes the output dimension of each
frame and h(·) is the Rectifier Linear Unit [18] non-linearity.
The localisation score can thus be expressed as:

swt (X) = Cn(Cn−1(...C1(X))) (2)

where Ci denote the ith convolutional layer.

2.2.2. Aggregation stage

For a given sentence X of length T , the sequence modeling
stage produces a score swt (X) for each frame t and each word

w ∈ W . Given that at training time we have only access to the
sequence-level bag-of-word labels, we need a way to aggregate
these frame-level scores into a single sequence-level detection
score Sw = aggreg(swt ).

The aggregation aggreg(·) should drive the network to-
wards correct frame-level assignments. A possible aggrega-
tion would be to take the sum over all frames: Sw =

∑
t s

w
t .

This would however assigns the same weight on all frames of
the speech sequence during the training procedure, even to the
ones which do not belong to the words corresponding to the la-
bels. On the other hand, one could apply a max aggregation:
Sw = maxt(s

w
t ). This would encourage the model to increase

the score of the frame which is considered as the most impor-
tant for the classification of a given word. With this approach,
the position of a given word would be correctly predicted, but
its duration would not, as only one frame is encouraged. We
propose a trade-off solution between these two cases, which is
the LogSumExp [19] (LSE):

Sr
w(X) =

1

r
log

(
1

T

∑
t

exp(rswt (X))

)
(3)

where r denotes the hyper-parameter controlling how smooth
one wants the approximation to be: high r values implies having
an effect similar to themax, very low values will have an effect
similar to the score averaging (sum). The advantage of this
aggregation is that the frames which have similar scores will
have a similar weight in the training procedure.

2.3. Training

In the proposed approach, we assume that only the bag-of-word
labels are available at training time. As more than one word
can be present in a sequence, the standard cross-entropy cost
function is not suited in this case. We propose to treat the task
as a separate binary classification problem for each word. The
loss functionL is thus a sum of of |W| binary logistic regression
classifiers:

L(S(X), y) =

|W|∑
w=1

log(1 + e−ywSw(X)) (4)

with Sw(x) being the score for the word w and the se-
quence input x and y being the bag-of-word label for sequence
X , with yw = {−1, 1} denoting the presence or absence of the
word w in the sequence.

Treating a multi-label classification problem as a sum of
independent classifier seems to be inadequate, but in our ap-
proach, the binary classifiers are not independent as they share
hidden layers (in the sequence modeling stage), which can
model the inter-label dependencies, if any.

2.4. Inference

During inference, the unseen utterance X is given as input to
the system. The system will produce as output the detection
score Sw(X) (as defined in (3)) for each word in the dictionary.
Using this score, the probability P (w|X) of the word w being
present in the utterance can be computed:

P (w|X) =
1

1 + e−Sw(X)
(5)

This probability can be used for word detection tasks, such as
keyword spotting.



As presented in the previous sections, the proposed system
is designed such as it is able to learn the word localisation. Dur-
ing training, the model increases the localisation score swt , as
defined in (2), of the frames which are considered the most im-
portant for the word detection. At inference time, we make the
assumption that for a given word, the score swt is a measure of
the likelihood of the word being in the utterance at time t. Based
on that assumption, the most likely position pw of a given word,
i.e. the most probable frame, can be computed as:

pw = argmaxt(s
w
t ) (6)

In order to localise a given word, a simple model is proposed: a
threshold is applied to the localisation score for the given word.
Thus, the word localisation is given by each frame whose scores
are higher than the threshold. A threshold per word is used, and
is determined experimentally.

swt > θw, ∀t (7)

with θw being the threshold for the word w. Note that it is
possible to detect more than one occurrence of a given word in
the utterance with this method.

3. Experimental Setup
We use Mel Filterbanks coefficients as input features. They
were computed using the Spectral package1. These features
consist of 40 coefficients, computed on a 25 ms window, with a
10 ms shift, without any speed or acceleration coefficients. The
hyper-parameters of the network were tuned on the validation
set by maximizing the F1 score. In the results, we used a de-
tection probability threshold of 0.4, that yields a F1 score (on
words) of 0.72 on the clean development set, and 0.6 on the
other development set. The proposed architecture is composed
of 10 convolutions layers. The first layer has a kernel width of
5 frames, the 9 other layers have a kernel width of 10 frames.
They all have a shift of 1 frame, and 80 filters. The 1000th most
common words in the training set were used as targets. We train
the network using stochastic gradient descent [20] with a learn-
ing rate of 10−5. The experiments were implemented using the
torch7 toolbox [21].

The LibriSpeech corpus [11] is an English corpus derived
from read audio books, sampled at 16 kHz, The trainset con-
sists of 280k utterances, representing 960 hours of speech. Two
development and test sets are available. In both cases, the
first set is composed of high quality utterances and is referred
to as dev clean and test clean. The second one is composed
of lower quality utterances, and referred to as dev other and
test other. Each of these sets consists of 40 speakers, and rep-
resents about 5 hours of speech. To obtain the word alignments,
we use the s5 recipe, provided by the Kaldi toolbox [22]. It
is a HMM/GMM system, taking MFCC as input; more details
can be found in [11]. We extract the word alignment from the
phoneme-based forced alignment.

4. Word localisation study
In this section, we evaluate the capability of the proposed ap-
proach to learn the word localisation in a weekly-supervised
manner. To this aim, we propose two experiments: first, we
evaluate the system capability to detect if a correct word posi-
tion is an utterance. Secondly, the duration of words learned by
the proposed system is evaluated. For these two studies, we use
the frame-level word alignment as ground-truth.

1https://github.com/mwv/spectral
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Figure 2: Mean IoU for each word on the test clean set.

4.1. Word position

For each utterance, the most probable position of a given word
is computed using Equation (6). We then check if this position
is correct (i.e. if the word is present at this frame on the ground-
truth labels). We propose two evaluation settings. In the first
one, referred to as oracle, the word detection capability of the
system is assumed to be perfect (i.e. we use the ground-truth
frame-level word labels). In the second setup, referred to as
actual, we perform a word detection by thresholding the prob-
ability of the word being present in the sequence using (5), and
then compute the position accuracy as presented above. In this
case, the threshold was tuned to maximize the F1 score on word
classification. The results are presented in Table 1. One can
observe that the proposed system is able to correctly detect the
position of most of the words.

Table 1: Word position accuracies
Set Oracle Actual

test clean 87.1 % 60.1 %
test other 83.5% 55.2%

4.2. Word duration

The duration of a given word is inferred by thresholding the lo-
calisation score, as presented in Section 2.4. To evaluate the
capacity of the proposed system to predict the correct word du-
ration, we use the Intersection-over-Union (IoU) metric. This
metric can be seen as a proximity measure between two pat-
terns, as it is equal to 0 if they do not overlap, and equal to 1 if
they are perfectly matching. A IoU score of 0.5 indicates that
half of the patterns match. It is well used for image segmenta-
tion (see [1] for example). Formally, it is defined as:

U
(w)
iou (ỹ, y) =

∑
t 1{ỹt=w∧yt=w}∑
t 1{ỹt=w∨yt=w}

(8)

with ỹ denotes the inferred sequence, y denotes the reference,
w ∈ W denotes a given word and 1{predicate} denotes the
indicator function, which is 1 if the predicate is true and 0 oth-
erwise.

Figure 2 presents the mean IoU for each word in the dictio-
nary. One can see that in average, about one third of the word
duration is captured. Figure 3 presents an illustration of an in-
ferred sequence and the ground-truth. Clearly, the proposed sys-
tem predicts shorter duration. This aspect could be improved,
for example by assigning the unassigned frames with neighbors
word labels, and will be part of our future work.



WE LEFT THE HOUSE AND STARTED ON OUR RETURN TO
0

WE LEFT THE HOUSE AND STARTED ON OUR RETURN TO
0

Figure 3: Illustration of an inferred sequence on the top and its
corresponding ground-truth, on the bottom.

5. Keywords Spotting Study
As presented in the previous section, the proposed approach is
able to learn the word localisation. In this section, we evaluate
the system in an “real-word” application: keyword spotting. To
demonstrate the viability of the system, we propose a prelimi-
nary study where the experiments are subjected to the following
constraints:

• The keywords spotted are in-vocabulary words, i.e.
words seen during training.

• As mentioned in Section 3, the word dictionary is limited
to the 1000th most common words in the corpus. Thus,
the keywords selected for the study are part of this sub-
set. This is unusual for KWS studies, as the selected key-
words are usually quite uncommon. This constraint is
selected for practical reasons, mainly for training speed.
However, the number of words is a hyper-parameter, and
could be extended to any number of words.

Table 2: Keywords list (in vocabulary)
any battle birds cannot

easily fifty filled great
known land lie never
only perfect perhaps presence
show thank them years

For evaluation, we use the Maximum Term Weight Value
(MTWV) metric, presented in [23], which is defined as one mi-
nus the average loss of the system. A perfect system output
gives a MTWV of 1 and a empty output gives a MTWV of 0.
We use the F4DE tool [24] for scoring. The set of keywords
that we used is presented in Table 2.

5.1. Keyword spotting method

For the keyword detection, a simple model is used: for each ut-
terance, the likelihood of the keyword being present in the utter-
ance is determined by thresholding the probability P (w|X) as
defined in Equation (5). The starting and ending time of the key-
word is then computed by thresholding the localisation score, as
presented in Equation (7).

5.2. Baseline

In order to compare the performance of the proposed system
on keyword spotting task, we select as our baseline one the
most common KWS system, provided by the Kaldi toolbox2.
The baseline is trained in a supervised manner, and is based
on a HMM/GMM-based LVCSR system. The KWS task is
performed using the lattice indexing technique, as presented
in [25]. This technique is based on generating, for each lattice
computed by the ASR system, a transducer structure in which
the start-time, the end-time and posterior probability of each
word is stored. For evaluation, we did not use a language model
for keyword decoding, as our system does not use one.

5.3. Results

Table 3 presents the results for the keyword spotting study for
the proposed system and the baseline, expressed in term of
MTWV. On the test clean, the proposed system yields similar
results to the baseline. Note that the proposed system is trained
only in a weakly-supervised manner and the baseline is trained
in a supervised manner. This result clearly shows that the pro-
posed system is able to jointly localise and classify words. On
the test other set, the performance gap between the proposed
system and the baseline suggests that the proposed system is
less robust than the baseline to mis-matched condition.

Table 3: Keyword spotting performance on the test clean and
the test clean set of LibriSpeech.

Set System MTWV
test clean Baseline 0.72

Proposed 0.69
test other Baseline 0.49

Proposed 0.33

6. Conclusion
We presented a novel approach to jointly localise and clas-
sify words from speech, trained in a weakly-supervised man-
ner using bag-of-words labels. The proposed system is based
on sequence training, and is composed of a convolutional neu-
ral network, which performs the acoustic modeling, and of an
aggregation stage, which aggregates the frame-level score into
a sequence-level score for words. We showed that our sys-
tem is able to localise words, and yield comparable perfor-
mance to a strong baseline trained in a supervised manner for
in-vocabulary keyword spotting. For future work, we will inves-
tigate out-of-vocabulary keyword spotting, in particular by us-
ing pairwise distances in our acoustic vectorial representation of
(in-vocabulary) words and their similarity to out-of-vocabulary
words, that we can project in this space. We will extend the pro-
posed approach to connected word recognition task, by adding
a decoder.
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