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Abstract

We propose a new fast purely discriminative algorithm for natural language pars-
ing, based on a “deep” recurrent convolutional graph transformer network (GTN).
Assuming a decomposition of a parse tree into a stack of “levels”, the network pre-
dicts a level of the tree taking into account predictions of previous levels. Using
only few basic text features, we show similar performance (in F1 score) to existing
pure discriminative parsers and existing “benchmark” parsers (like Collins parser,
probabilistic context-free grammars based), with a huge speed advantage.

1 Introduction

Parsing has been pursued with tremendous efforts in the Natural Language Processing (NLP)
community. Since the introduction of lexicalized1 probabilistic context-free grammar (PCFGs)
parsers [1, 2], improvements have been achieved over the years, but generative PCFGs parsers of the
last decade from Collins [3] and Charniak [4] still remain standard benchmarks. Given the success
of discriminative learning algorithms for classical NLP tasks (Part-Of-Speech (POS) tagging, Name
Entity Recognition, Chunking...), the generative nature of such parsers has been questioned. First
discriminative parsing algorithms [5, 6] did not reach standard PCFG-based generative parsers. Hen-
derson [6] outperforms Collins parser only by using a generative model and performing re-ranking.
Charniak [7] also successfully leveraged re-ranking. Pure discriminative parsers from Taskar [8] and
Turian [9] finally reached Collins’ parser performance, with various simple template features. How-
ever, these parsers were slow to train and were both limited to sentences with less than 15 words.
Most recent discriminative [10, 11] parsers are based on Conditional Random Fields (CRFs) with
PCFG-like features. In the same spirit, Carreras et al [12] use a global-linear model (instead of a
CRF), with PCFG and dependency features.

We motivate our work with the fundamental question: how far can we go with discriminative parsing,
with as little prior information as possible? We propose a fast new discriminative parser which not
only does not rely on information extracted from PCFGs, but does not rely on most classical parsing
features. In fact, with only few basic text features and Part-Of-Speech (POS), it performs similarly
to Taskar and Turian’s parsers on small sentences, and similarly to Collins’ parser on long sentences.

We trade this reduction of features for a “deeper” architecture, a.k.a. a particular deep neural net-
work. As is the case for choosing parsing features, we acknowledge that training a neural network
is a task which requires some experience. From our perspective, this knowledge allows however
flexible and generic architectures. Indeed, from a deep learning point of view, our approach is quite
conventional, based on a convolutional neural network (CNN) adapted for text. CNNs were success-
ful very early for tasks involving sequential data [13]. They have also been applied to NLP [14, 15],
but limited to “flat” tagging problems. We combine CNNs with a structured tag inference in a graph,
the resulting model being called a Graph Transformer Network (GTN) [16]. Again, this is not a sur-

†Most of this work as been achieved when Ronan Collobert was at NEC Laboratories America.
1Which leverage head words of parsing constituents.
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Figure 1: Parse Trees representation. As in Penn Treebank (a), and after concatenating nodes span-
ning same words (b). In (c) we show our definition of “levels”.

prising architecture: GTNs are for deep models what CRFs are for linear models [17], and CRFs
had great success in NLP [18, 19, 20].

We convert parse trees into a stack of levels, and then train a recursive GTN which predicts a “level”
of the tree based on predictions of previous levels. This approach shares some similarity with the
finite-state parsing cascades from Abney [21]. However, Abney’s algorithm was limited to partial
parsing, because each level of the tree was predicted by its own tagger: the maximum depth of the
tree had to be chosen beforehand.

In Section 2 we describe how we convert trees to (and from) a stack of levels. Section 3 describes
our GTN architecture for text. Section 4 shows how to implement necessary constraints to get a
valid tree from a level decomposition. Evaluation of our system on standard benchmarks is given
in Section 5.

2 Parse Trees

We consider linguistic parse trees as described in Figure 1a. The root spans all of the sentence, and
is recursively decomposed into sub-constituents (the nodes of the tree) with labels like NP (noun
phrase), VP (verb phrase), S (sentence), etc. The tree leaves contain the sentence words. All our
experiments were performed using the Penn Treebank dataset [22], on which we applied several
standard pre-processing steps: (1) functional labels as well as traces were removed (2) the label PRT
was converted into ADVP (see [1]) (3) duplicate constituents (spanning the same words and with
the same label) were removed. The resulting dataset contains 26 different labels, that we will denote
L in the rest of the paper.

2.1 Parse Tree Levels

Many NLP tasks involve finding chunks of words in a sentence, which can be viewed as a tagging
task. For instance, “Chunking” is a task related to parsing, where one wants to obtain the label
of the lowest parse tree node in which each word ends up. For the tree in Figure 1a, the pairs
word/chunking tags could be written as: But/O stocks/S-NP kept/B-VP falling/E-VP. We chose
here to adopt the IOBES tagging scheme to mark chunk boundaries. Tag “S-NP” is used to mark
a noun phrase containing a single word. Otherwise tags “B-NP”, “I-NP”, and “E-NP” are used to
mark the first, intermediate and last words of the noun phrase. An additional tag “O” marks words
that are not members of a chunk.

As illustrated in Figure 2, one can rewrite a parse tree as a stack of tag levels (see Figure 1c). We
achieve this tree conversion by first transforming the lowest nodes of the parse tree into chunk tags
(‘Level 1”). Tree nodes which contain sub-nodes are ignored at this stage2. Words not into one of
the lowest nodes are tagged as “O”. We then strip the lowest nodes of the tree, and apply the same
principle for “Level 2”. We repeat the process until one level contains the root node. We chose
a bottom-up approach because one can rely very well on lower level predictions: the chunking

2E.g. in Figure 1a, “kept” is not tagged as “S-VP” in Level 1, as the node “VP” still contains sub-nodes “S”
and “VP” above “falling”.
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Level 4 B-S I-S I-S E-S
Level 3 O O B-VP E-VP
Level 2 O O O S-S
Level 1 O S-NP O S-VP
Words But stocks kept falling

Figure 2: The parse tree shown in Figure 1a, rewritten as four levels of tagging tasks.

task, which describes in an other way the lowest parse tree nodes, has a very good performance
record [18].

2.2 From Tagging Levels To Parse Trees

Even if it had success with partial parsing [21], the simplest scheme where one would have a different
tagger for each level of the parse tree is not attractive in a full parsing setting. The maximum number
of levels would have to be chosen at train time, which limits the maximum sentence length at test
time. Instead, we propose to have a unique tagger for all parse tree levels:

1. Our tagger starts by predicting Level 1.

2. We then predict next level according to a history of previous levels, with the same tagger.

3. We update the history of levels and go to 2.

This setup fits naturally into the recursive definition of the levels. However, we must insure the
predicted tags correspond to a parse tree. In a tree, a parent node fully includes child nodes. Without
constraints during the level predictions, one could face a chunk partially spanning another chunk at
a lower level, which would break this tree constraint.

We can guarantee that the tagging process corresponds to a valid tree, by adding a constraint enforc-
ing higher level chunks to fully include lower level chunks. This iterative process might however
never end, as it can be subject to loops: for instance, the constraint is still satisfied if the tagger pre-
dicts the same tags for two consecutive levels. We propose to tackle this problem by (a) modifying
the training parse trees such that nodes grow strictly as we go up in the tree and (b) enforcing the
corresponding constraints in the tagging process.

Tree nodes spanning the same words for several consecutive level are first replaced by one node
in the whole training set. The label of this new node is the concatenation of replaced node labels
(see Figure 1b). At test time, the inverse operation is performed on nodes having concatenated
labels. Considering all possible label combinations would be intractable3. We kept in the training
set concatenated labels which were occurring at least 30 times (corresponding to the lowest number
of occurrences of the less common non-concatenated tag). This added 14 extra labels to the 26 we
already had. Adding the extra O tag and using the IOBES tagging scheme led us to 161 ((26+14)×
4 + 1) different tags produced by our tagger. We denote T this ensemble of tags.

With this additional pre-processing, any tree node is strictly larger (in terms of words it spans) than
each of its children. We enforce the corresponding Constraint 1 during the iterative tagging process.

Constraint 1 Any chunk at level i overlapping a chunk at level j < i must span at least this over-
lapped chunk, and be larger.

As a result, the iterative tagging process described above will generate a chunk of size N in at most
N levels, given a sentence of N words. At this time, the iterative loop is stopped, and the full tree
can be deduced. The process might also be stopped if no new chunks were found (all tags were O).
Assuming our simple tree pre-processing has been done, this generic algorithm could be used with
any tagger which could handle a history of labels and tagging constraints. Even though the tagging
process is greedy because there is no global inference of the tree, we will see in Section 5 that it can
perform surprisingly well. We propose in the next section a tagger based on a convolutional Graph

3Note that more than two labels might be concatenated. E.g., the tag SBAR#S#VP is quite common in the
training set.
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Figure 3: Our neural network architecture. Words and other desired discrete features (caps, tree
history, ...) are given as input. The lookup tables embed each feature in a vector space, for each
word. This is fed in a convolutional network which outputs a score for each tag and each word.
Finally, a graph is output with network scores on the nodes and additional transition scores on the
edges. A Viterbi algorithm is performed to infer the word tags.

Transformer Network (GTN) architecture. We will see in Section 4 how we keep track of the history
and how we implement Constraint 1 for that tagger.

3 Architecture

We chose to use a variant of the versatile convolutional neural network architecture first proposed
in [14] for language modeling, and reintroduced later in [15] for various NLP tasks involving tag-
ging. Our network outputs a graph over which inference is achieved with a Viterbi algorithm. In
that respect, one can see the whole architecture (see Figure 3) as an instance of GTNs [16, 23]. All
network and graph parameters are trained in a end-to-end way with stochastic gradient maximizing
a graph likelihood. We first describe in this section how we adapt neural networks to text data, and
then we introduce GTNs training procedure. We will show in Section 4 how one can further adapt
this architecture for parsing, by introducing a tree history feature and few graph constraints.

Word Embeddings We consider a fixed-sized word dictionary4W . Given a sentence of N words
{w1, w2, . . . , wN}, each word wn ∈ W is first embedded into a D-dimensional vector space, by
applying a lookup-table operation:

LTW (wn) =W ×
(
0, · · · 0, 1

at index wn

, 0, · · · 0
)T

=Wwn
, (1)

where the matrix W ∈ RD×|W| represents the parameters to be trained in this lookup layer. Each
column Wn ∈ RD corresponds to the embedding of the nth word in our dictionaryW . Having in
mind the matrix-vector notation in (1), the lookup-table applied over the sentence can be seen as an
efficient implementation of a convolution with a kernel width of size 1.

In practice, it is common that one wants to represent a word with more than one feature. In our exper-
iments we always took at least the low-caps words and a “caps” feature: wn = (wlowcaps

n , wcaps
n ).

In this case, we apply a different lookup-table for each discrete feature (LTW lowcaps and LTW caps ),
and the word embedding becomes the concatenation of the output of all these lookup-tables:

LTWwords(wn) =
(
LTW lowcaps(wlowcaps

n )T, LTW caps(wcaps
n )

)T
. (2)

For simplicity, we consider only one lookup-table in the rest of the architecture description.
4Unknown words are mapped to a special UNKNOWN word. Also, we map numbers to a NUMBER word.
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Word Scoring Scores for all tags T and all words in the sentence are produced by applying a
classical convolutional neural network over the lookup-table embeddings (1). More precisely, we
consider all successive windows of text (of size K), sliding over the sentence, from position 1 to
N . At position n, the the network is fed with the vector xn resulting from the concatenation of the
embeddings:

xn =
(
WT

wn−(K−1)/2
, . . . , WT

wn+(K−1)/2

)T

.

The words with indices exceeding the sentence boundaries (n− (K−1)/2 < 1 or n+(K−1)/2 >
N ) are mapped to a special PADDING word. As any classical neural network, our architecture
performs several matrix-vector operations on its inputs, interleaved with some non-linear transfer
function h(·). It outputs a vector of size |T | for each word at position n, interpreted as a score for
each tag in T and each word wn in the sentence:

s(xn) =M2 h(M1 xn) , (3)

where the matrices M1 ∈ RH×(KD) and M2 ∈ R|T |×H are the trained parameters of the network.
The number of hidden units H is a hyper-parameter to be tuned. As transfer function, we chose the
hyperbolic tangent h(z) = tanh(z) in our experiments.

Long-Range Dependencies The “window” approach proposed above assume that the tag of a
word is solely determined by the surrounding words in the window. As we will see in our experi-
ments, this approach falls short on long sentences. Inspired by [15], we consider a variant of this
architecture, where all words {w1, w2, . . . , wN} are considered for tagging a given word wn. To
specifiy to the network that we want to tag the word wn, we introduce an additional lookup-table
in (2), which embeds the relative distance (m − n) of each word wm in the sentence with respect
to wn. At each position 1 ≤ m ≤ N , the outputs of the all lookup-tables (2) (low caps word, caps,
relative distance...) LTWwords(wm) are first combined together by applying a mappingM0. We then
extract a fixed-size “global” feature vector xn by performing a max over the sentence:

[xn]i = max
1≤m≤N

[
M0 LTWwords(wm)

]
i
∀i (4)

This feature vector is then fed to scoring layers (3). The matrix M0 is trained by back-propagation,
as any other network parameter. We will refer this approach as “sentence approach” in the following.

Structured Tag Inference We know that there are strong dependencies between parsing tags in
a sentence: not only are tags organized in chunks, but some tags cannot follow other tags. It is
thus natural to infer tags from the scores in (3) using a structured output approach. We introduce a
transition score Atu for jumping from tags t ∈ T to u ∈ T in successive words, and an initial score
At0 for starting from the tth tag. The last layer of our network outputs a graph with |T | ×N nodes
Gtn (see Figure 3). Each node Gtn is assigned a score s(xn)t from the previous layer (3) of our
architecture. Given a pair of nodes Gtn and Gum, we add an edge with transition score Atu on the
graph. For compactness, we use the sequence notation [t]N1

∆
= {t1, . . . , tn} for now. We score a tag

path [t]N1 in the graph G, as the sum of scores along [t]N1 in G:

S([w]N1 , [t]
N
1 ,θ) =

N∑
n=1

(
Atn−1tn + s(xn)tn

)
, (5)

where θ represents all the trainable parameters of our complete architecture (W , M1, M2 and A).
The sentence tags [t?]N1 are then inferred by finding the path which leads to the maximal score:

[t?]N1 = argmax
[t]N1 ∈T N

S([w]N1 , [t]
N
1 ,θ) . (6)

The Viterbi algorithm [24] is the natural choice for this inference. We will show now how to train
all the parameters of the network θ in a end-to-end way.

Training Likelihood Following the GTN’s training method introduced in [16, 23], we consider a
probabilistic framework, where we maximize a likelihood over all the sentences [w]N1 in our training
set, with respect to θ. The score (5) can be interpreted as a conditional probability over a path by
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taking it to the exponential (making it positive) and normalizing with respect to all possible paths
(summing to 1 over all paths). Taking the log(·) leads to the following conditional log-probability:

log p([t]N1 | [w]N1 , θ) = S([w]N1 , [t]
N
1 , θ)− logadd

∀[u]N1 ∈T N

S([w]N1 , [u]
N
1 , θ) , (7)

where we adopt the notation logaddi zi = log(
∑

i e
zi). This likelihood is the same as the one found

in Conditional Random Fields (CRFs) [17] over temporal sequences. The CRF model is however
linear (which would correspond in our case to a linear neural network, with fixed word embeddings).

Computing the log-likelihood (7) efficiently is not straightforward, as the number of terms in the
logadd grows exponentially with the length of the sentence. Fortunately, in the same spirit as the
Viterbi algorithm, one can compute it in linear time with the following classical recursion over n:

δn(v)
∆
= logadd
{[u]n1 ∩un=v}

S([w]n1 , [u]
n
1 , θ)

= logadd
t

logadd
{[u]n1 ∩un−1=t∩un=v}

S([w]n−1
1 , [u]n−1

1 , θ) +Aun−1v + s(xn)v

= s(xn)v + logadd
t

(δn−1(t) +Atv) ∀v ∈ T ,

(8)

followed by the termination logadd∀[u]N1
S([w]N1 , [u]

N
1 , θ) = logaddu δN (u) . As a comparison,

the Viterbi algorithm used to perform the inference (6) is achieved with the same recursion, but
where the logadd is replaced by a max, and then tracking back the optimal path through each max.

Stochastic Gradient We maximize the log-likelihood (7) using stochastic gradient ascent, which
has the main advantage to be extremely scalable [25]. Random training sentences [w]N1 and their
associated tag labeling [t]N1 are iteratively selected. The following gradient step is then performed:

θ ←− θ + λ∂ log p([t]N1 | [w]N1 , θ)/∂θ , (9)
where λ is a chosen learning rate. The gradient in (9) is efficiently computed via a classical back-
propagation [26]: the differentiation chain rule is applied to the recursion (8), and then to all network
layers (3), including the word embedding layers (1). Derivations are simple (but fastidious) algebra,
and will be reported in a longer version of this paper.

4 Chunk History and Tree Constraints

The neural network architecture we presented in Section 3 is made “recursive” by adding an addi-
tional feature (and its corresponding lookup-table (1)) describing a history of previous tree levels.
For that purpose, we gather all chunks which were discovered in previous tree levels. If several
chunks were overlapping at different levels, we consider only the largest one. Assuming Con-
straint 1 is true, a word can be at most in one of the remaining chunk. This is our history5 C. The
corresponding IOBES tags of each word will be fed as feature to the GTN. For instance, assuming
the labeling in Figure 2 was found up to Level 3, the chunks we would consider in C for tagging
Level 4 would be only the NP around “stocks” and the VP around “kept falling”. We would discard
the S and VP around “falling” as they are included by the larger VP chunk.

Implementing Constraint 1 is now made easy using this history C and a IOBES tagging scheme. For
each chunk c ∈ C, we adapt the graph output by our network Figure 3 such that any new candidate
chunk c̃ overlapping c includes c, and is larger than c. For each candidate label (say VP) we create
three possible paths (see Figure 4) for the duration of c: (1) Both c and c̃ starts at the same position.
The first tag of c̃ is then B-VP, and remaining tags overlapping with c are maintained at I-VP. In
this way, c̃ has to end after c. (2) Both c and c̃ end at the same position. The last tag of c̃ is then
E-VP, and previous tags overlapping with c are maintained at I-VP. In this way, c̃ has to start before
c. (3) The candidate chunk c̃ includes c but does not start nor ends at the same position. The path is
maintained on I-VP while overlapping c. As a result, it will start before and end after c. In addition
to these 3 × |L| possible paths overlapping c, there is an additional path where no chunk is found
over c, in which case all tags stay in O while overlapping c. Finally, as c̃ must be strictly larger than
c, any S- tag is discarded for the duration of c. Parts of the graph not overlapping with the chunk
history C remain fully connected, as previously described in Section 3.

5Some other kind of history could have been chosen (e.g. a feature for each arbitrary chosen L ∈ N previous
levels). However we still need to “compute” the proposed history for implementing Constraint 1.
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Figure 4: Implementing tree constraints: the chunk history (bottom) contains the NP “the black
cat”. At the next level the inference graph (top) is constrained for the sections overlapping this
chunk, such that new overlapping chunks include “the black cat”, and are strictly larger. The top
candidate path is taken when no chunk is found (O). The three next candidate paths relate to the
candidate label VP. The graph contains similar triplets of paths for all the other labels.

5 Experiments

We conducted our experiments on the standard English Penn Treebank benchmark [22]. Sections
02–21 were used for training, section 22 for validation, and section 23 for testing. Standard pre-
processing as described in Section 2 was performed. In addition, the training set trees were trans-
formed such that two nodes spanning the same words were concatenated as described in Section 2.2.
We report results on the test set in terms of recall (R), precision (P ) and F1 score. Scores were ob-
tained using the EVALB implementation6.

Our architecture (see Section 3) was trained on all possible parse tree levels (see Section 2.1), for
all sentences available in the training set. Random levels in random sentences were presented to
the network until convergence on the validation set. We fed our network with (1) lower cap words
(to limit the number of words), (2) a capital letter feature (is low caps, is all caps, had first letter
capital, or had one capital) to keep the upper case information (3) the relative distance to the word
of interest (only for the “sentence approach”) (4) a POS feature7 (unless otherwise mentioned) (5)
the history of previous levels (see Section 4). During training, the true history was given. During
testing the history and the tags were obtained recursively from the network outputs, starting from
Level 1, (see Section 2.2). All features had a corresponding lookup-table (1) in the network.

Only few hyper-parameters were tried in our models (chosen according to the validation). Lookup-
table sizes for the low cap words, caps, POS, relative distance (in the “sentence approach”) and
history features were respectively 50, 5, 5, 5 and 10. The window size of our convolutional network
wasK = 5. We used the word embeddings obtained from the language model (LM) [15] to initialize
the word lookup-table. Finally, we fixed the learning rate λ = 0.01 during the stochastic gradient
procedure (9). The only neural network “tricks” we used were (1) the initialization of the parameters
was done according to the fan-in, and (2) the learning rate was divided by the fan-in [27].

Small Scale Experiments First discriminative parse trees were very computationally expensive
to train. Taskar et al. [8] proposed a comparison setup for discriminative parsers limited to Penn
Treebank sentences with ≤ 15 words. Turian et. al [9] reports almost 5 days of training for their
own parser, using parallelization, on this setup. They also report several months of training for
Taskar et al.’s parser. In comparison, our parser takes only few hours to train (on a single CPU) on
this setup. We report in Table 1 test performance of our window approach system (“GTN Parser”,
with H = 300 hidden units) against Taskar and Turian’s discriminative parsers. We also report
performance of Collins parser [3], a reference in non-discriminative parsers. Not initializing the
word lookup table with the language model (LM) and not using POS features performed poorly,
similar to experiments reported in [15]. Initializing with the LM but not using POS or using POS

6Available at http://cs.nyu.edu/cs/projects/proteus/evalb.
7Obtained with the tagger available at http://ml.nec-labs.com/senna.
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Table 1: Comparison of parsers trained and tested on Penn Treebank, on sentences ≤ 15 words,
against our GTN parser (window approach).

Model R P F1

Collins (1999) [3] 88.2 89.2 88.7
Taskar et al. (2004) [8] 89.1 89.1 89.1
Turian and Melamed (2006) [9] 89.3 89.6 89.4
GTN Parser 82.4 82.8 82.6
GTN Parser (LM) 86.1 87.2 86.6
GTN Parser (POS) 87.1 86.2 86.7
GTN Parser (LM+POS) 89.2 89.0 89.1

Table 2: Parsers comparison trained on the full Penn Treebank, and tested on sentences with ≤ 40
and ≤ 100 words. We also report testing time on the test set (Section 23).

≤ 40 Words ≤ 100 Words Test Time
R P F1 R P F1 (sec.)

Magerman (1995) [1] 84.6 84.9 84.8
Collins (1996) [2] 85.8 86.3 86.1 85.3 85.7 85.5
Collins (1999) [3] 88.5 88.7 88.6 88.1 88.3 88.2 2640
Charniak (2000) [4] 90.1 90.1 90.1 89.6 89.5 89.6 1020
Charniak & Johnson (2005) [7] 92.0 91.4
Finkel et al. (2008) [10] 88.8 89.2 89.0 87.8 88.2 88.0
Petrov et al. (2008) [11] 90.0 89.4
Carreras et al. (2008) [12] 89.9 91.1 90.5
GTN Parser (window) 81.3 81.9 81.6 80.3 81.0 80.6
GTN Parser (window, LM) 84.2 85.7 84.9 83.5 85.1 84.3
GTN Parser (window, LM+POS) 85.6 86.8 86.2 84.8 86.2 85.5
GTN Parser (sentence, LM+POS) 88.1 88.8 88.5 87.5 88.3 87.9 76

but not LM gave similar improvements in performance. Combining LM and POS compares well
with other parsers.

Large Scale Experiments We also trained ( Table 2) our GTN parsers (both the “window” and
“sentence” approach) on the full Penn Treebank dataset. Both takes a few days to train on a single
CPU in this setup. The number of hidden units was set to H = 700. The size of the embed-
ding space obtained with M0 in the “sentence approach” was 300. Our “window approach” parser
compares well against the first lexical PCFG parsers: Magerman (1995) and Collins (1996). The
“sentence approach” provides a clear boost and compares well against Collins (1999) parser8, a
standard benchmark in NLP. More refined parsers like Charniak & Johnson (2005) (which takes
advantage of re-ranking) or recent discriminative parsers (which are based on PCFGs features) have
higher F1 scores. Our parser performs comparatively well, considering we only used simple text
features. Finally, we report some timing results on Penn Treebank test set (many implementations
are not available). The GTN parser9 was an order of magnitude faster than other available parsers.

6 Conclusion

We proposed a new fast and scalable purely discriminative parsing algorithm based on Graph Trans-
former Networks. With only few basic text features, it performs similarly to existing pure discrim-
inative algorithms, and similarly to Collins (1999) “benchmark” parser. Many paths remain to be
explored: richer features (in particular head words, as do lexicalized PCFGs), combination with gen-
erative parsers, less greedy bottom-up inference (e.g. using K-best decoding), or other alternatives
to describe trees.

8We picked Bikel’s implementation available at http://www.cis.upenn.edu/˜dbikel.
9Our implementation can be downloaded at http://ml.nec-labs.com/senna/.
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