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A Brief History Of Machine Learning

As with the history of the world, machine learning has a history of

and

exploration exploitation

(finding new things) (of what you, or someone else, found)

a (and sometimes wars because of it!)
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In the beginning: discovery of the Perceptron

“It’s cool, it’s sexy.” (Franky Rosenblatt 1957)

“It’s linear. It sucks” (Minsky, Papert 1969)..

... and people believed Minksy, which made them sad ..
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The Quest to Model Nonlinearities

So they tried to make it nonlinear:

• Random projections to induce

nonlinearities,

• Adding nonlinear features to the

inputs, e.g. products of features,

• They even thought of kernels

(Aizerman, Brav., Roz. 1964).

but they were still depressed.... until......
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They Discovered Multi-Layered Perceptrons

(Backprop - Rumelhart, Hinton & Williams, 1986)

...and they got excited..!
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They were so excited they kept trying

more and more things...
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And more and more things...

...until people got scared!
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Even though they hadn’t reached the complexity of the

only known intelligent thing in the universe (the brain)
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..and the universe they were trying to model itself

seemed just as complex,

They decided what they were doing was too complex...
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So they found something less complex... someone came

up with a new Perceptron network!

“It’s cool. It’s sexy” (Vlad Vapnik, 1992)

“Isn’t it a linear model?” (Yann LeCun, 1992)
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Life was Convex

... and life was good.
People published papers about it.
But it didn’t do everything they wanted...
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Learning Representations

Learning the kernel = multi-layer again!
Neural nets are an elegant model for learning representations.
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Multi-tasking: sharing features

Task1 Task2 Task3 Task4

Inputs

Non-convex even for linear models! (Ando & Zhang, 2005)

Nevertheless, Neural nets are an elegant model for multi-tasking.
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Semi-supervised learning: Transductive SVM

The loss was non-convex! (& convex relaxations = slow)

Semi-supervision for Neural nets is no problem, don’t worry.
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Feature Engineering

Multi-layer: 1st layer = human brain = nonconvex!!
The first layers of a neural net use machine learning not human learning,
which is what we’re supposed to be doing.
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Scalability

SVMs are slow, even though books were devoted to making them fast

(Bottou, Chapelle, Descoste, Weston 2007). Problem: too many SVs!

             DO  NOT EXIST

Solutions:

• Using stochastic gradient descent

like NNs (Bottou, NIPS 2008)

• Learning which SVs to use –

non-convex, like a 2-layer NN.

• Using linear SVMs (very popular) –

back to the Perceptron!
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IDEA! Rebrand “Neural Nets” → “Deep Nets”

dfsfdgdfg(and add some semi-supervision to improve their performance)

“It’s cool!” (Geoff Hinton, this morning after breakfast)

“It’s sexy!” (Yann L. and Yoshua B., just before lunch)

“Haven’t we been here before?” (Everyone else, 2009)

...BUT, still, some were enough to come to this tutorial!
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But seriously, putting it all together:

• NNs are flexible:

– Different module (layers), losses, regularizers, . . .

– Multi-tasking

– Semi-supervised learning

– Learning hidden representations

• NNs are scalable

The ideal tool for NLP!

All hail NNs!
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This Talk: The Big Picture

The Goal:

•We want to have a conversation with our computer

(not easy)

• Convert a piece of English into a computer-friendly data structure

= find hidden representations

• Use NLP tasks to measure if the computer “understands”

Learn NLP from “scratch”
(i.e. minimal feature engineering)

The Plan:

Part I Brainwashing: Neural Networks are Awesome!
Part II Labeling: Hidden Representations for Tagging
Part III Retrieval: Hidden Representations for Semantic Search
Part IV Situated Learning: Hidden Representations for Grounding
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Natural Language Processing Tasks

Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)

Chunking (CHUNK): syntactic constituents (noun phrase, verb phrase...)

Name Entity Recognition (NER): person/company/location...

Semantic Role Labeling (SRL): semantic role

[John]ARG0 [ate]REL [the apple]ARG1 [in the garden]ARGM−LOC
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NLP Benchmarks

Datasets:
? POS, CHUNK, SRL: WSJ (≈ up to 1M labeled words)
? NER: Reuters (≈ 200K labeled words)

System Accuracy
Shen, 2007 97.33%
Toutanova, 2003 97.24%
Gimenez, 2004 97.16%

(a) POS: As in (Toutanova, 2003)

System F1
Shen, 2005 95.23%
Sha, 2003 94.29%
Kudoh, 2001 93.91%

(b) CHUNK: CoNLL 2000

System F1
Ando, 2005 89.31%
Florian, 2003 88.76%
Kudoh, 2001 88.31%

(c) NER: CoNLL 2003

System F1
Koomen, 2005 77.92%
Pradhan, 2005 77.30%
Haghighi, 2005 77.04%

(d) SRL: CoNLL 2005

We chose as benchmark systems:
? Well-established systems
? Systems avoiding external labeled data

Notes:
? Ando, 2005 uses external unlabeled data
? Koomen, 2005 uses 4 parse trees not provided by the challenge

3



Complex Systems

Two extreme choices to get a complex system

? Large Scale Engineering: design a lot of complex features, use a fast

existing linear machine learning algorithm
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Complex Systems

Two extreme choices to get a complex system

? Large Scale Engineering: design a lot of complex features, use a fast

existing linear machine learning algorithm

? Large Scale Machine Learning: use simple features, design a complex

model which will implicitly learn the right features
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NLP: Large Scale Engineering (1/2)

Choose some good hand-crafted features

Predicate and POS tag of predicate Voice: active or passive (hand-built rules)

Phrase type: adverbial phrase, prepositional phrase, . . . Governing category: Parent node’s phrase type(s)

Head word and POS tag of the head word Position: left or right of verb

Path: traversal from predicate to constituent Predicted named entity class

Word-sense disambiguation of the verb Verb clustering

Length of the target constituent (number of words) NEG feature: whether the verb chunk has a ”not”

Partial Path: lowest common ancestor in path Head word replacement in prepositional phrases

First and last words and POS in constituents Ordinal position from predicate + constituent type

Constituent tree distance Temporal cue words (hand-built rules)

Dynamic class context: previous node labels Constituent relative features: phrase type

Constituent relative features: head word Constituent relative features: head word POS

Constituent relative features: siblings Number of pirates existing in the world. . .

Feed them to a shallow classifier like SVM
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NLP: Large Scale Engineering (2/2)

Cascade features: e.g. extract POS, construct a parse tree

Extract hand-made features from the parse tree

Feed these features to a shallow classifier like SVM
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NLP: Large Scale Machine Learning

Goals

Task-specific engineering limits NLP scope

Can we find unified hidden representations?

Can we build unified NLP architecture?

Means

Start from scratch: forget (most of) NLP knowledge

Compare against classical NLP benchmarks

Our dogma: avoid task-specific engineering
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Chapter II

The Networks
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Neural Networks

Stack several layers together

W xMatrix-vector
operation

Non-Linearity

xInput Vector

1
Linear layer

HardTanh

W Matrix-vector
operation 2

Linear layer

yOutput Vector

f(   )

Increasing level of abstraction at each layer

Requires simpler features than “shallow” classifiers

The “weights” Wi are trained by gradient descent

How can we feed words?

10



Words into Vectors

Idea

Words are embed in a vector space

R50

cat

jesus
sits

on

the

mat
car

smoke

Embeddings are trained

Implementation

A word w is an index in a dictionary D ∈ N

Use a lookup-table (W ∼ feature size × dictionary size)

LTW (w) = W•w
Remarks

Applicable to any discrete feature (words, caps, stems...)

See (Bengio et al, 2001)
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Window Approach

Input Window

Lookup Table

Linear

HardTanh

Linear

Text cat sat on the mat
Feature 1 w1

1 w1
2 . . . w1

N...
Feature K wK

1 wK
2 . . . wK

N

LTW 1

...
LTW K

M1 × ·

M2 × ·

word of interest

d

concat

n1
hu

n2
hu = #tags

Tags one word at the time

Feed a fixed-size window of text

around each word to tag

Works fine for most tasks

How do deal with long-range

dependencies?

E.g. in SRL, the verb of

interest might be outside

the window!
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Sentence Approach (1/2)

Feed the whole sentence to the network

Tag one word at the time: add extra position features

Convolutions to handle variable-length inputs

W × •

time

See (Bottou, 1989)

or (LeCun, 1989).

Produces local features with higher level of abstraction

Max over time to capture most relevant features

Max
Outputs a fixed-sized feature

vector
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Sentence Approach (2/2)

Input Sentence

Lookup Table

Convolution

Max Over Time

Linear

HardTanh

Linear

Text The cat sat on the mat
Feature 1 w1

1 w1
2 . . . w1

N...
Feature K wK

1 wK
2 . . . wK

N

LTW 1

...
LTW K

max(·)

M2 × ·

M3 × ·

d

P
adding

P
adding

n1
hu

M1 × ·

n1
hu

n2
hu

n3
hu = #tags
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Training

Given a training set T
Convert network outputs into probabilities

Maximize a log-likelihood

θ 7−→
∑

(x, y)∈T
log p(y |x, θ)

Use stochastic gradient ascent (See Bottou, 1991)

θ ←− θ + λ
∂ log p(y |x, θ)

∂θ

Fixed learning rate. “Tricks”:

? Divide learning by “fan-in”
? Initialization according to “fan-in”

Use chain rule (“back-propagation”) for efficient gradient computation

Network f (·) has L layers

f = fL ◦ · · · ◦ f1

Parameters

θ = (θL, . . . , θ1)

∂ log p(y |x, θ)

∂θi
=
∂ log p(y |x, θ)

∂fi
· ∂fi
∂θi

∂ log p(y |x, θ)

∂fi−1
=
∂ log p(y |x, θ)

∂fi
· ∂fi
∂fi−1

How to interpret neural networks outputs as probabilities?
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Word Tag Likelihood (WTL)

The network has one output f (x, i, θ) per tag i

Interpreted as a probability with a softmax over all tags

p(i |x,θ) =
ef (x, i,θ)∑
j e
f (x, j,θ)

Define the logadd operation

logadd
i

zi = log(
∑
i

ezi)

Log-likelihood for example (x, y)

log p(y |x, θ) = f (x, y, θ)− logadd
j

f (x, j, θ)

How to leverage the sentence structure?
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Sentence Tag Likelihood (STL) (1/2)

The network score for tag k at the tth word is f ([x]T1 , k, t, θ)

Akl transition score to jump from tag k to tag l

The
Arg0

Arg1

Arg2

Verb

cat sat on the mat

Aij

f(x , k, t)1
T

k ∈

Sentence score for a tag path [i]T1

s([x]T1 , [i]T1 , θ̃) =

T∑
t=1

(
A[i]t−1[i]t

+ f ([x]T1 , [i]t, t, θ)
)

Conditional likelihood by normalizing w.r.t all possible paths:

log p([y]T1 | [x]T1 , θ̃) = s([x]T1 , [y]T1 , θ̃)− logadd
∀[j]T1

s([x]T1 , [j]T1 , θ̃)

How to efficiently compute the normalization?
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Sentence Tag Likelihood (STL) (2/2)

Normalization computed with recursive Forward algorithm:

Aij

f(x , j, t)1
T

δ(i)
t-1

δt(j) = logAddi

[
δt−1(i) + Ai,j + fθ(j, x

T
1 , t)

]
Termination:

logadd
∀[j]T1

s([x]T1 , [j]T1 , θ̃) = logAddi δT (i)

Simply backpropagate through this recursion with chain rule

Non-linear CRFs: Graph Transformer Networks (Bottou, 1997)

Compared to CRFs, we train features (network parameters θ and

transitions scores Akl)

Inference: Viterbi algorithm (replace logAdd by max)
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Supervised Benchmark Results

Network architectures:

? Window (5) approach for POS, CHUNK & NER (300HU)

? Convolutional (3) for SRL (300+500HU)

? Word Tag Likelihood (WTL) and Sentence Tag Likelihood (STL)

Network features: lower case words (size 50), capital letters (size 5)

dictionary size 100,000 words

Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92

NN+WTL 96.31 89.13 79.53 55.40
NN+STL 96.37 90.33 81.47 70.99

STL helps, but... fair performance.

Capacity mainly in words features... are we training it right?
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Supervised Word Embeddings

Sentences with similar words should be tagged in the same way:
? The cat sat on the mat
? The feline sat on the mat

france jesus xbox reddish scratched megabits
454 1973 6909 11724 29869 87025

persuade thickets decadent widescreen odd ppa
faw savary divo antica anchieta uddin

blackstock sympathetic verus shabby emigration biologically
giorgi jfk oxide awe marking kayak

shaheed khwarazm urbina thud heuer mclarens
rumelia stationery epos occupant sambhaji gladwin
planum ilias eglinton revised worshippers centrally
goa’uld gsNUMBER edging leavened ritsuko indonesia

collation operator frg pandionidae lifeless moneo
bacha w.j. namsos shirt mahan nilgiris

About 1M of words in WSJ

15% of most frequent words in the dictionary are seen 90% of the time

Cannot expect words to be trained properly!
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Chapter III

Lots Of Unlabeled Data
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Ranking Language Model

Language Model: “is a sentence actually english or not?”
Implicitly captures: ? syntax ? semantics

Bengio & Ducharme (2001) Probability of next word given previous
words. Overcomplicated – we do not need probabilities here

Entropy criterion largely determined by most frequent phrases

Rare legal phrases are no less significant that common phrases

f () a window approach network

Ranking margin cost:∑
s∈S

∑
w∈D

max (0, 1− f (s, w?s) + f (s, w))

S: sentence windows D: dictionary
w?s: true middle word in s

f (s, w): network score for sentence s and middle word w

Stochastic training:

? positive example: random corpus sentence
? negative example: replace middle word by random word
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Training Language Model

Two window approach (11) networks (100HU) trained on two corpus:

? LM1: Wikipedia: 631M of words

? LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words

Massive dataset: cannot afford classical training-validation scheme

Like in biology: breed a couple of network lines

Breeding decisions according to 1M words validation set

LM1

? order dictionary words by frequency

? increase dictionary size: 5000, 10, 000, 30, 000, 50, 000, 100, 000

? 4 weeks of training

LM2

? initialized with LM1, dictionary size is 130, 000

? 30,000 additional most frequent Reuters words

? 3 additional weeks of training
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Unsupervised Word Embeddings

france jesus xbox reddish scratched megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mb/s
germany christ msx pinkish punched bit/s

italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbit/s
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish sectioned megapixels

hungary parvati geforce silvery slashed gbit/s
switzerland grace capcom yellowish ripped amperes
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Semi-Supervised Benchmark Results

Initialize word embeddings with LM1 or LM2

Same training procedure

Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92

NN+WTL 96.31 89.13 79.53 55.40
NN+STL 96.37 90.33 81.47 70.99
NN+WTL+LM1 97.05 91.91 85.68 58.18
NN+STL+LM1 97.10 93.65 87.58 73.84
NN+WTL+LM2 97.14 92.04 86.96 –
NN+STL+LM2 97.20 93.63 88.67 74.15

Huge boost from language models

Training set word coverage:
LM1 LM2

POS 97.86% 98.83%
CHK 97.93% 98.91%
NER 95.50% 98.95%
SRL 97.98% 98.87%
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Chapter IV

Multi-Task Learning
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Multi-Task Learning

Joint training

Good overview in (Caruana, 1997)

Lookup Table

Linear

Lookup Table

Linear

HardTanh HardTanh

Linear

Task 1

Linear

Task 2

M2
(t1) × · M2

(t2) × ·

LTW 1

...
LTW K

M1 × ·
n1

hu n1
hu

n2
hu,(t1) = #tags n2

hu,(t2) = #tags
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Multi-Task Learning Benchmark Results

Approach POS CHUNK NER
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31

NN+STC+LM2 97.20 93.63 88.67
NN+STC+LM2+MTL 97.22 94.10 88.62
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Chapter V

The Temptation
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Cascading Tasks

Increase level of engineering by incorporating common NLP techniques

Stemming for western languages benefits POS (Ratnaparkhi, 1996)

? Use last two characters as feature (455 different stems)

Gazetteers are often used for NER (Florian, 2003)

? 8, 000 locations, person names, organizations and misc entries

from CoNLL 2003

POS is a good feature for CHUNK & NER (Shen, 2005) (Florian, 2003)

? We feed our own POS tags as feature

CHUNK is also a common feature for SRL (Koomen, 2005)

? We feed our own CHUNK tags as feature
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Cascading Tasks Benchmark Results

Approach POS CHUNK NER SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92

NN+STC+LM2 97.20 93.63 88.67 74.15
NN+STC+LM2+Suffix2 97.29 – – –
NN+STC+LM2+Gazetteer – – 89.59 –
NN+STC+LM2+POS – 94.32 88.67 –
NN+STC+LM2+CHUNK – – – 74.72
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Variance

Train 10 networks

Approach POS CHUNK NER
(PWA) (F1) (F1)

Benchmark Systems 97.24% 94.29% 89.31%

NN+STC+LM2+POS worst 97.29% 93.99% 89.35%
NN+STC+LM2+POS mean 97.31% 94.17% 89.65%
NN+STC+LM2+POS best 97.35% 94.32% 89.86%

Previous experiments:

same seed was used for all networks to reduce variance
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Parsing

Parsing is essential to SRL (Punyakanok, 2005) (Pradhan, 2005)

State-of-the-art SRL systems use several parse trees (up to 6!!)

We feed our network several levels of Charniak parse tree
provided by CoNLL 2005

level 0

S

NP

The luxury auto maker
b-np i-np i-np e-np

NP

last year
b-np e-np

VP

sold
s-vp

NP

1,214 cars
b-np e-np

PP

in
s-vp

NP

the U.S.
b-np e-np

level 1

S

The luxury auto maker last year
o o o o o o

VP

sold 1,214 cars
b-vp i-vp e-vp

PP

in the U.S.
b-pp i-pp e-pp

level 2

S

The luxury auto maker last year
o o o o o o

VP

sold 1,214 cars in the U.S.
b-vp i-vp i-vp i-vp i-vp e-vp
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SRL Benchmark Results With Parsing

Approach SRL
(test set F1)

Benchmark System (six parse trees) 77.92

Benchmark System (top Charniak only) 74.76†
NN+STC+LM2 74.15
NN+STC+LM2+CHUNK 74.72
NN+STC+LM2+Charniak (level 0 only) 75.62
NN+STC+LM2+Charniak (levels 0 & 1) 75.86
NN+STC+LM2+Charniak (levels 0 to 2) 76.03
NN+STC+LM2+Charniak (levels 0 to 3) 75.90
NN+STC+LM2+Charniak (levels 0 to 4) 75.66

†
on the validation set
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Engineering a Sweet Spot

SENNA: implements our networks in simple C (≈ 2500 lines)

Neural networks mainly perform matrix-vector multiplications: use BLAS

All networks are fed with lower case words (130,000) and caps features

POS uses prefixes

CHUNK uses POS tags

NER uses gazetteer

SRL uses level 0 of parse tree

? We trained a network to predict level 0 (uses POS tags):

92.25% F1 score against 91.94% for Charniak

? We trained a network to predict verbs as in SRL

? Optionaly, we can use POS verbs
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SENNA Speed

System RAM (Mb) Time (s)
Toutanova, 2003 1100 1065

Shen, 2007 2200 833
SENNA 32 4

(a) POS

System RAM (Mb) Time (s)
Koomen, 2005 3400 6253

SENNA 124 52
(b) SRL
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SENNA Demo

Will be available in January at
http://ml.nec-labs.com/software/senna

If interested: email ronan@collobert.com
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Conclusion

Achievements
“All purpose” neural network architecture for NLP tagging

Limit task-specific engineering

Rely on very large unlabeled datasets

We do not plan to stop here

Critics
Why forgetting NLP expertise for neural network training skills?
? NLP goals are not limited to existing NLP task

? Excessive task-specific engineering is not desirable

Why neural networks?
? Scale on massive datasets

? Discover hidden representations

? Most of neural network technology existed in 1997 (Bottou, 1997)

If we had started in 1997 with vintage computers,
training would be near completion today!!

40



Deep Learning

for NLP: Parts 3 & 4

Ronan Collobert Jason Weston
NEC Labs America, Princeton, USA Google, New York, USA

1



Part 3

“Semantic Search”
Learning Hidden Representations for Retrieval
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Document Ranking: Our Goal

We want to learn to match a query (text) to a target (text).

Most supervised ranking methods use hand-coded features.

Methods like LSI that learn from words are unsupervised.

In this work we use supervised learning from text only:

Learn hidden representations of text for learning to rank from words.

Outperforms existing methods (on words) like TFIDF, LSI or a

(supervised) margin ranking perceptron baseline.
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Basic Bag-o’-words

Bag-of-words + cosine similarity:

• Each doc. {dt}Nt=1 ⊂ RD is a normalized bag-of-words.

• Similarity with query q is: f (q, d) = q>d

Doesn’t deal with synonyms: bag vectors can be orthogonal

No machine learning at all
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Latent semantic indexing (LSI)

Learn a linear embedding φ(di) = Udi via a reconstruction objective.

• Rank with: f (q, d) = q>U>Ud = φ(q)>φ(di)
1.

Uses “synonyms”: low-dimensional latent “concepts”.

Unsupervised machine learning: useful for goal?

1 f (q, d) = q>(U>U + αI)d gives better results.
Also, usually normalize this → cosine similarity.
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(Polynomial) Supervised Semantic Indexing (SSI )

• Define document-query similarity function: f (q, d) = w>φk([q, d]), where

Φk(x1, . . . , xD) considers all possible k-degree terms:

Φk(x1, . . . , xD) = 〈xi1 . . . xik : 1 ≤ i1 . . . ik ≤ D〉.

We consider:

• f2(q, d) =
∑D

i,j=1 Wijqidj = q>Wd (1)

• f3(q, d) =
∑D

i,j,k=1 Wijkqidjdk + f2(q, d). (2)

Supervised machine learning: targeted for goal, uses synonyms

Too Big/Slow?!
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SSI: why is this a good model?

Classical bag-of-words doesnt work when there are few matching terms:

q=(kitten, vet, nyc)

d=(cat, veterinarian, new, york)

Our method q>Wd learns that e.g. kitten and cat are highly related.

E.g. if i is the index of kitten and j is the index of cat, then Wij > 0
after training.

Usefulness of degree 3 model::
Poly degree 2:
Weights for word pairs: e.g. “jagger” ∈ q & “stones” ∈ d.
Poly degree 3:
Weights for word triples: e.g. “jagger” ∈ q &“stones”, “gem” ∈ d.
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SSI: Why the Basic Model Sucks

Even for degree 2, W is big : 3.4Gb if D = 30000, 14.5Tb if D = 2.5M .

Slow: q>Wd computation has mn computations qjWijdi, where q and

d have m and n nonzero terms.

Or one computes v = q>W once, and then vd for each document.

Classical speed where query has D terms, assuming W is dense → still

slow.
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SSI Improved model: Low Rank W

For degree 2, Constrain W :

W = U>V + I.

U and V are N ×D matrices → smaller
Low dimensional “latent concept” space like LSI (same speed).
Differences: supervised, asymmetric, learns with I.

• For k = 2, replace W with W = (U>V ) + I:

f2
LR(q, d) = q>(U>V + I)d, =

∑N
i=1(Uq)i(V d)i + q>d.

• For k = 3, approximate Wijk with W ijk =
∑

l UliVljYlk:

f3
LR(q, d) =

∑N
i=1(Uq)i(V d)i(Y d)i + f2

LR(q, d).
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Neural Network Models for Retrieval

3452345234253455

   
query

1xd

document

1xd

Input: 1xd

Output: 1xn

Input: 1xd

Output: 1xn    

e.g. d=2.5M

(dictionary)

(embedding space)

0 0000 1 1 00 0 0 1 1 010 01 010 100100 10 10 0010 1010 1 00 01 1 1001 010 10 1010  01 10 1 010 0001 1 01 1001 01 01

Final Score

Dot Product

Module 1 Module 2

1xn1xn 4523452345435345

e.g. n=100
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Doc. Embedding for Polynomial Degree 3

document

   

Input: 1xd

Map

1xd 0 0000 1 1 00 0 0 1 1 010 01 010 100100 10 10 0010 1010 1

1xn Output: 1xn

*
Component−wise product

Linear Map 2

d x n d x n

Linear

O

Module 2
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SSI: Training

Training Loss

• Ranking loss from preference triplets (q, d+, d−), “for query q, d+ should

appear above d−”:

• L(W ;R) =
∑

(q,d+,d−)∈R
max(0, 1− fW (q, d+) + fW (q, d−))

Learning Algorithm Stochastic Gradient Descent: Fast & scalable.

Iterate Sample a triplet (q, d+, d−),

Update W ← W − λ ∂
∂W max(0, 1− fW (q, d+) + fW (q, d−)).
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Prior Work: Summary of learning to Rank

• SVM [Joachims, 2002] and NN ranking methods [Burges, 2005] .
Use hand-coded features: title, body, URL, search rankings,. . . (don’t use words)
(e.g. Burges uses 569 features in all).

• In contrast we use only the words and try to find their hidden representation.

• Several works on optimizing different loss functions (MAP, ROC, NDCG): [Cao,
2008], [Yu, 2007], [Qin, 2006],. . . .

• [Grangier & Bengio, ’06] used similar methods to basic SSI for retrieving images.

• [Goel, Langord & Strehl, ’08] used Hash Kernels (Vowpal Wabbit) for advert
placement.

• Main difference: i) we use low rank & ii) polynomial degree 3 features.

We could also add features + new loss to our method ..

13



Experimental Comparison

•Wikipedia

– 1,828,645 documents. 24,667,286 links.

– Split into 70% train, 30% test.

• Pick random doc. as query, then rank other docs.

• Docs that are linked to it should be highly ranked.

• Two setups:

(i) whole document is used as query;

(ii) 5,10 or 20 words are picked to mimic keyword search.

14



Experiments: Doc-Doc Ranking

D = 30000

Algorithm Params Rank-Loss MAP P10
TFIDF 0 1.62% 0.342±0.01 0.170±0.007

Query Expansion 2 1.62% 0.330 0.160
LSI 200D 4.79% 0.161 0.101
αLSI + (1− α)TFIDF 200D+1 1.28% 0.346 0.170
Marg. Rank Perceptron D2 0.41% 0.477 0.212
SSI: poly (k = 2) 400D 0.30% 0.517 0.229
SSI: poly (k = 3) 600D 0.14% 0.539 0.236

NOTE:Best possible P10= 0.31 – on average every query has only about 3 links.
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Experiments: Doc-Doc Ranking

D = 2.5M

Algorithm Rank-Loss MAP P10
TFIDF 0.842% 0.432±0.012 0.193
Query Expansion 0.842% 0.432 0.1933
αLSI + (1− α)TFIDF 0.721% 0.433 0.193
Hash Kernels + αI 0.322% 0.492 0.215
SSI: poly (k = 2) 0.158% 0.547±0.012 0.239±0.008
SSI: poly (k = 3) 0.099% 0.590±0.012 0.249±0.008
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Experiments: Query-Document Ranking

k-keywords based retrieval (D = 30000):

k = 5
Algorithm Params Rank MAP P@10
TFIDF 0 21.6% 0.047 0.023
αLSI + (1− α)TFIDF 200D+1 14.2% 0.049 0.023
SSI: poly (k = 2) 400D 4.37% 0.166 0.083

k = 10
Algorithm Params Rank MAP P@10
TFIDF 0 14.0% 0.083 0.035
αLSI + (1− α)TFIDF 200D+1 9.73% 0.089 0.037
SSI: poly (k = 2) 400D 2.91% 0.229 0.100

k = 20
Algorithm Params Rank MAP P@10
TFIDF 0 9.14% 0.128 0.054
αLSI + (1− α)TFIDF 200D+1 6.36% 0.133 0.059
SSI: poly (k = 2) 400D 1.80% 0.302 0.130
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Experiments: Cross-Language Retrieval

Query: in Japanese Target Doc: in English – use links from Wikipedia as before.

Algorithm Rank-Loss MAP P10
TFIDFEngEng(Google translated queries) 4.78% 0.319±0.009 0.259±0.008

αLSIEngEng+(1− α)TFIDFEngEng 3.71% 0.300±0.008 0.253±0.008

αCL-LSIJapEng+(1− α)TFIDFEngEng 3.31% 0.275±0.009 0.212±0.008

SSIEngEng (Google Translated) 1.72% 0.399±0.009 0.325±0.009

SSIJapEng 0.96% 0.438±0.009 0.351±0.009
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What’s Inside W?

We can look at the matrix W we learn and see the synonyms it learns

(large values of Wij):

kitten cat cats animals species dogs

vet veterinarian veterinary medicine animals animal

ibm computer company technology software data

nyc york new manhattan city brooklyn

c++ programming windows mac unix linux

xbox console game games microsoft windows

beatles mccartney lennon song band harrison

britney spears album music pop her
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Summary

Powerful: supervised method for document ranking.

Efficient low-rank models → learn hidden representations.

Nonlinearities improve accuracy.
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Part 4

Situated Learning: Hidden Representations

for Grounding Language

The Concept Labeling Task

Collaborators: Antoine Bordes, Nicolas Usunier
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Connecting NLP with a world: Why?

• Existing NLP: Much (not all) solves syntactic or semantic sub-tasks:
E.g. POS, chunking, parsing, SRL, MT, summarization . . .

They don’t use “situated” learning.

We understand language because it has a deep connection to the
world it is used in/for → strong prior knowledge

“John saw Bill in the park with his telescope.”
“He passed the exam.”

”John went to the bank.”

World knowledge we might already have:
Bill owns a telescope.

Fred took an exam last week.
John is in the countryside (not the city).

How can a computer do that?

22



Learning Speech in a Situated Environment?
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The Learning Signal : text adventure game

Planet Earth = tricky:

vision, speech, motor control + language understanding.

Multi-user game (e.g. on the internet) = easier.

Simplest version = text adventure game. Good test-bed for ML?

Represent atomic actions as concepts (get, move, give, shoot, ...).

Represent physical objects as concepts (character1, key1, key2, ...).

(Can consider this signal as a pre-processed version of a visual signal.)

24



The Concept Labeling Task

Definition:

Map any natural language sentence x ∈ X to its labeling in terms of

concepts y ∈ Y, where y is a sequence of concepts.

One is given training data triples {xi,yi,ui}i=1,...,m ∈ X × Y × U where ui

is the current state the world.

Universe = set of concepts and their relations to other concepts,

U = (C,R1, . . . ,Rn), where n is the number of types of relation and Ri ⊂ C2,

∀i = 1, . . . , n.

→ Learning to perform this task is appropriate because:

- possibly very complex rules to learn,

- rule-based systems might scale badly with large problems,

- flexibility from one domain to another.
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Example of Concept Labeling
Define two relations:

• location(c) = c′ with c, c′ ∈ C,
• containedby(c) = c′ with c, c′ ∈ C.

A training triple (x,y,u) ∈ X × Y × U:

He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

<Gina> <Mark>

locatio
n

<John> <cook> <rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location
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Disambiguation Example

He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

Step 0:

<Gina>

<Mark>

locatio
n
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Disambiguation Example

He cooks the rice

? ? ? ?

x:

y:

u:

Step 4:

(2)

(1)

<kitchen>

<garden>

<John>

<rice><cook>

<Gina>

<Mark>

Label ”He” requires two rules which are never explicitly given.
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Ambiguities we will handle

He picked up the hat there.

The milk on the table.

The one on the table.

She left the kitchen.

The adult left the kitchen.

Mark drinks the orange.

. . .

(e.g. for sentence (2) there may be several milk cartons that exist. . . )
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Concept Labeling Is Challenging

• Solving ambiguities requires to use rules based on linguistic

information and available universe knowledge.

• But, these rules are never made explicit in training.

→ A concept labeling algorithm has to learn them.

• No engineered features for describing words/concepts are given.

→ A concept labeling algorithm has to discover them from raw data.
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Learning Algorithm : Basic Argmax

We could do this:

y = f (x, u) = argmaxy′ g(x, y′, u),

g(·) should be large if concepts y′ are consistent with both the sentence

x and the current state of the universe u.

However. . . could be slow.
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Simulation : algorithm

Model a world + Generate training data for our learning task:

1. Generate a new event, (v, a) = event(u).

– Generates verb+ set of args – a coherent action given the universe.

E.g. actors change location and pick up, exchange & drop objects. . .

2. Generate a training triple, i.e. (x,y)=generate(v, a).

– Returns a sentence and concept labeling pair given a verb + args.

This sentence should describe the event.

3. Update the universe, i.e. u := exec(v)(a, u).
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Labeled Data generated by the Simulation

Simulation of a house with 58 concepts: 15 verbs, 10 actors, 15 small
objects, 6 rooms and 12 pieces of furniture. . .

. . .
x: the father gets some yoghurt from the sideboard
y: - <father> <get> - <yoghurt> - - <sideboard>

x: he sits on the chair
y: <brother> <sit> - - <chair>

x: she goes from the bedroom to the kitchen
y: <mother> <move> - - <bedroom> - - <kitchen>

x: the brother gives the toy to her
y: - <brother> <give> - <toy> - <sister>

. . .

→ Generate a dataset of 50,000 training triples and 20,000 testing triples
(≈55% ambiguous), without any human annotation.
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Experimental Results using an SVM

Method Features Train Err Test Err
SVMstruct x 42.26% 42.61%
SVMstruct x + u (loc, contain) 18.68% 23.57%

• No feature engineering: used raw words (and concept relations) as

input.

→ Using world knowledge leads to better generalization.

• Can we learn a hidden representation and do better?
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Neural Network Scoring Function

Our score combines two functions gi(·) and h(·) ∈ RN which are neural

networks.

g(x, y, u) =

|x|∑
i=1

gi(x, y−i, u)>h(yi, u)

• gi(x, y−i, u) is a sliding-window on the text and neighboring concepts

centered around ith word → embeds to N dim-space.

• h(yi, u) embeds the ith concept to N dim-space.

• Dot-product: confidence that ith word labeled with concept yi.
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Scoring Illustration
Step 0: Set the sliding-window around the 1st word.

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 1: Retrieve words representations from the “lookup table”.

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD

Words represented using a "lookup−

table" D = hash−table word−vector.

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 2: Similarly retrieve concepts representations.

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD

Words represented using a "lookup−

table" D = hash−table word−vector.

Concepts and their relations represented 

using another "lookup−table" C.

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 3: Concatenate vectors to obtain window representation.

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD

Words represented using a "lookup−

table" D = hash−table word−vector.

Concepts and their relations represented 

using another "lookup−table" C.

Concatenation in a big vector 

represents the sliding−window

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 4: Compute g1(x, y−1, u).

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD

Embedding of the sliding−window

in N dim−space.

Words represented using a "lookup−

table" D = hash−table word−vector.

Concepts and their relations represented 

using another "lookup−table" C.

Concatenation in a big vector 

represents the sliding−window

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 5: Get the concept <John> and its relations.

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD <John>

<kitchen>

l
o
c
a
t
i
o
n

Embedding of the sliding−window

in N dim−space.

Words represented using a "lookup−

table" D = hash−table word−vector.

Concepts and their relations represented 

using another "lookup−table" C.

Concatenation in a big vector 

represents the sliding−window

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 6: Compute h(<John>, u).

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD <John>

<kitchen>

l
o
c
a
t
i
o
n

Embedding of the sliding−window

in N dim−space.

Words represented using a "lookup−

table" D = hash−table word−vector.

Concepts and their relations represented 

using another "lookup−table" C.

Concatenation in a big vector 

represents the sliding−window

Embedding of each concept and 

its relations in N dim−space.

Sliding−window on the text 

and neighboring concepts.
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Scoring Illustration
Step 7: Finally compute the score: g1(x, y−1, u)>h(<John>, u).

He cooks the ricePADPAD PAD l
o
c
a
t
i
o
n

?

<kitchen>

<rice><cook>

?PAD

PAD

PAD

PAD

PAD

PAD <John>

<kitchen>

l
o
c
a
t
i
o
n

Embedding of the sliding−window

in N dim−space.

Words represented using a "lookup−

table" D = hash−table word−vector.

Concepts and their relations represented 

using another "lookup−table" C.

Concatenation in a big vector 

represents the sliding−window

Embedding of each concept and 

its relations in N dim−space.

SCORE

Sliding−window on the text 

and neighboring concepts.

Dot product between embeddings: 

confidence in the labeling.

< | >
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Greedy “Order-free” Inference using LaSO

Adapted from LaSO (Learning As Search Optimization) [Daumé & al.,’05].

Inference algorithm:

1. For all the positions not yet labeled, predict the most likely concept.

2. Select the pair (position, concept) you are the most confident in.

(hopefully the least ambiguous)

3. Remove this position from the set of available ones.

4. Collect all universe-based features of this concept to help label

remaining ones.

5. Loop.
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Experimental Results

Method Features Train Err Test Err
SVMstruct x 42.26% 42.61%
SVMstruct x + u (loc, contain) 18.68% 23.57%
NNOF x 32.50% 35.87%
NNOF x + u (contain) 15.15% 17.04%
NNOF x + u (loc) 5.07% 5.22%
NNOF x + u (loc, contain) 0.0% 0.11%

• Different amounts of universe knowledge: no knowledge, knowledge

about containedby, location, or both.

→More world knowledge leads to better generalization.

→ Learning representations leads to better generalization.
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Features Learnt By the Model

Our model learns representations of concepts embedding space.

Nearest neighbors in this space:

Query Concept Most Similar Concepts
Gina Francoise , Maggie
Mark Harry, John
mother sister, grandma
brother friend, father
cat hamster, dog
football toy, videogame
chocolate salad, milk
desk bed, table
livingroom kitchen, garden
get sit, give

E.g. the model learns that female actors are similar, even though we

have not given this information to the model.
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Summary

Simple, but general framework for language grounding based on the

task of concept labeling.

Scalable, flexible learning algorithm that can learn without hand-

crafted rules or features.

Simulation validates our approach and shows that learning to

disambiguate with world knowledge is possible.

AI goal: train learner living in a “computer game world” to learn

language from scratch from interaction alone (communication, actions).
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Final Conclusion
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(Some of the) Previous Work

• Blocks world, KRL [Winograd, ’72],[Bobrow & Winograd, ’76]

• Ground language with visual reference, e.g. in blocks world [Winston

’76],[Feldman et al. ’96] or more recent works [Fleischman & Roy

’07],[Barnard & Johnson ’05],[Yu & Ballard ’04],[Siskind’00].

•Map from sentence to meaning in formal language [Zettlemoyer &

Collins, ’05], [Wong & Mooney, ’07], [Chen & Mooney ’08]

Example applications:

(i) word-sense disambiguation (from images),

(ii) generate Robocup commentaries from actions,

(iii) convert questions to database queries.
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Train the System

• Online training i.e. prediction and update for each example.

• At each greedy step, if a prediction ŷt is incorrect, several updates are

made to the model to satisfy:

For each correct labeling alternative ŷt−1
+yi

, g(x, ŷt−1
+yi

, u) > g(x, ŷt, u).

• Intuitively, we want any incorrect partial prediction to be ranked below

all correct partial labeling.

→ “Order-free” is not directly supervised.

• All updates performed with SGD + Backpropagation.
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The Learning Signal: weak labeling scenario

Even more challenging setting: training data {xi,yi,ui}i=1,...,m as before.

However, y is a set (bag) of concepts - no alignment to sentence.

This is more realistic:

A child sees actions and hears sentences → must learn correlation.
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Extension: weak concept labeling

He cooks the rice

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

<Gina> <Mark>

locatio
n

<cook>
<John>

<rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location
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Extension: weak concept labeling

Solution: modified LaSo updates – rank anything in the “bag” higher

than something not in the bag.

Results:

Method Features Train Err Test Err
SVMstruct x + u (loc, contain) 18.68% 23.57%
NNOF x + u (loc, contain) 0.0% 0.11%
NNWEAK x + u (loc, contain) 0.0% 0.17%
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