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ABSTRACT
In this article we propose Supervised Semantic Indexing
(SSI), an algorithm that is trained on (query, document)
pairs of text documents to predict the quality of their match.
Like Latent Semantic Indexing (LSI), our models take ac-
count of correlations between words (synonymy, polysemy).
However, unlike LSI our models are trained with a super-
vised signal directly on the ranking task of interest, which
we argue is the reason for our superior results. As the query
and target texts are modeled separately, our approach is
easily generalized to different retrieval tasks, such as online
advertising placement. Dealing with models on all pairs of
words features is computationally challenging. We propose
several improvements to our basic model for addressing this
issue, including low rank (but diagonal preserving) represen-
tations, and correlated feature hashing (CFH). We provide
an empirical study of all these methods on retrieval tasks
based on Wikipedia documents as well as an Internet adver-
tisement task. We obtain state-of-the-art performance while
providing realistically scalable methods.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.3.3 [Information Search and Retrieval]: Re-
trieval models

General Terms
Algorithms

Keywords
semantic indexing, learning to rank, content matching

1. INTRODUCTION
In this article we study the task of learning to rank doc-

uments, given a query, by modeling their semantic content.
Although natural language can express the same concepts in
many different ways using different words, classical ranking
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algorithms do not attempt to model the semantics of lan-
guage, and simply measure the word overlap between texts.
For example, a classical vector space model, see e.g. [1], uses
weighted word counts (e.g. via tf-idf) as a feature represen-
tation of a text, and the cosine similarity for comparing to
other texts. If two words in query and document texts mean
the same thing but are different unique strings, there is no
contribution to the matching score derived from this seman-
tic similarity. Indeed, if the texts do not share any words at
all, no match is inferred.

There exist several unsupervised learning methods to try
to model semantics, in particular Latent Semantic Index-
ing [11], and related methods such as pLSA and LDA [19,
3]. These methods choose a low dimensional feature rep-
resentation of “latent concepts” that is constructed via a
linear mapping from the (bag of words) content of the text.
This mapping is learnt with a reconstruction objective, ei-
ther based on mean squared error (LSI) or likelihood (pLSA,
LDA). As these models are unsupervised, they may not learn
a matching score that works well for the task of interest. Su-
pervised LDA (sLDA) [2] has been proposed where a set of
auxiliary labels are trained on jointly with the unsupervised
task. However, the supervised task is not a task of learning
to rank because the supervised signal is at the document
level and is query independent.

In this article we propose Supervised Semantic Indexing
(SSI) which defines a class of models that can be trained
on a supervised signal (i.e., labeled data) to provide a rank-
ing of a database of documents given a query. This signal
is defined at the (query,documents) level and can either be
point-wise — for instance the relevance of the document to
the query — or pairwise — a given document is better than
another for a given query. In this work, we focus on pair-
wise preferences. For example, if one has click-through data
yielding query-target relationships, one can use this to train
these models to perform well on this task [22]. Or, if one is
interested in finding documents related to a given query doc-
ument, one can use known hyperlinks to learn a model that
performs well on this task [16]. Moreover, our approach can
model queries and documents separately, which can accom-
modate for differing word distributions between documents
and queries. This might be important in cases like matching
advertisements to web pages where the two distributions are
different, and a good match does not necessarily have over-
lapping words.

Learning to rank as a supervised task is not a new subject,
however most methods and models have typically relied on
optimizing over only a few hand-constructed features, e.g.



based on existing vector space models such as tf-idf, the ti-
tle, URL, PageRank and other information, see e.g. [22, 5].
Our work is orthogonal to those works, as it presents a way
of learning a model for query and target texts by consid-
ering features generated by all pairs of words between the
two texts. The difficulty here is that such feature spaces
are very large and we present several models that deal with
memory, speed and capacity control issues. In particular
we propose constraints on our model that are diagonal pre-
serving but otherwise low rank and a technique of hashing
features (sharing weights) based on their correlation, called
correlated feature hashing (CFH). In fact, both our proposed
methods can be used in conjunction with other features and
methods explored in previous work for further gains.

We show experimentally on retrieval tasks developed from
Wikipedia that our method strongly outperforms word-feature
based models such as tf-idf vector space models, LSI and
other baselines on document-document and query-document
tasks. Finally, we give results on an Internet advertising task
using proprietary data from an online advertising company.

The rest of this article is as follows. In Section 2 we de-
scribe our method, Section 3 discusses prior work, Section 4
describes the experimental study of our method, and Section
5 concludes with a discussion.

2. SUPERVISED SEMANTIC INDEXING
Let us denote the set of documents in the corpus as {dt}`t=1 ⊂

RD and a query text as q ∈ RD, where D is the dictionary
size1, and the jth dimension of a vector indicates the fre-
quency of occurrence of the jth word, e.g. using the tf-idf
weighting and then normalizing to unit length [1].

2.1 Basic Model
The set of models we propose are all special cases of the

following type of model:

f(q, d) = q>Wd =

DX
i,j=1

qiWijdj (1)

where f(q, d) is the score between a query q and a given
document d, and W ∈ RD×D is the weight matrix, which
will be learned from a supervised signal. This model can
capture synonymy and polysemy (hence the term“semantic”
in the name of the algorithm) as it looks at all possible cross
terms, and can be tuned directly for the task of interest.
We do not use stemming since our model can already match
words with common stems (if it is useful for the task). Note
that negative correlations via negative values in the weight
matrix W can also be encoded.

Expressed in another way, given the pair q, d we are con-
structing the joint feature map:

Φ((i−1)D+j)(q, d) = (qd>)ij (2)

where Φs(·) is the sth dimension in our feature space, and
choosing the set of models:

f(q, d) = w · Φ(q, d). (3)

Note that a model taking pairs of words as features is es-
sential here, a simple approach concatenating (q, d) into a

1In fact in our resulting methods there is no need to restrict
that both q and d have the same dimensionality D but we
will make this assumption for simplicity of exposition.

single vector and using f(q, d) = w · [q, d] is not a viable
option as it would result in the same document ordering for
any query.

We could train any standard method such as a ranking
perceptron or a ranking SVM using our choice of features.
However, without further modifications, this basic approach
has a number of problems in terms of speed, storage space
and capacity as we will now discuss.

Efficiency of a dense W matrix .
We analyze both memory and speed considerations. Firstly,

this method so far assumes that W fits in memory (un-
less sparsity is somehow enforced). If the dictionary size
D = 30, 000, then this requires 3.4Gb of RAM (assuming
floats), and if the dictionary size is 2.5 Million (as it will
be in our experiments in Section 4) this amounts to 14.5
Terabytes. The vectors q and d are sparse so the speed of
computation of a single query-document pair involves mn
computations qiWijdj , where q and d have m and n non-
zero terms, respectively. We have found this is reasonable
for training, but may be an issue at test time2. Alternatively,
one can compute v = q>W once, and then compute vd for
each document. This is the same speed as a classical vector
space model where the query contains D terms, assuming W
is dense. The capacity of this model is also obviously rather
large. As every pair of words between query and target is
modeled separately it means that any pair not seen during
the training phase will not have its weight trained. Regular-
izing the weights so that unseen pairs have Wij = 0 is thus
essential, as discussed in Section 2.3. However, this is still
not ideal and clearly a huge number of training examples
will be necessary to train so many weights, most of which
are not used for any given training pair (q, d).

Overall, a dense matrix W is challenging in terms of mem-
ory footprint, computation time and controlling its capacity
for good generalization. In the next section we describe ways
of improving over this basic approach.

2.2 Improved Model: Low Rank Diagonal-
Preserving W Matrices

An efficient scheme is to constrain W in the following way:

W = U>V + I. (4)

Here, U and V are N × D matrices. This induces a N -
dimensional “latent concept” space in a similar way to LSI.
However, it differs in several ways:

• Most importantly it is trained from a supervised signal
using preference relations (ranking constraints).

• Further, U and V differ so it does not assume the query
and target document should be embedded in the same
way. This can hence model when the query text dis-
tribution is very different to the document text distri-
bution, e.g. the queries are typically short and have
different word occurence and co-occurrence statistics.
In content matching, web-pages and online advertise-
ments could be quite different and are also naturally
modeled in this setup.

2Of course, any method can be sped up by applying it to
only a subset of pre-filtered documents, filtering using some
faster method.



• Finally, the addition of the identity term means this
model automatically learns the tradeoff between us-
ing the low dimensional space and a classical vector
space model. This is important because the diagonal
of the W matrix considers whether the same terms
are shared by the query and the document. Indeed,
setting W = I is equivalent to cosine similarity using
tf-idf. The matrix I is full rank and therefore cannot
be approximated with the low rank model U>V , so
our model combines both. Note that the weights of U
and V are learnt so one does not necessarily need a
weighting parameter for I.

However, the efficiency and memory footprint are as fa-
vorable as LSI. Typically, one caches the N -dimensional rep-
resentation for each document to use at query time.

We also highlight several other regularization variants,
which are further possible ways of constraining W :

• W = I: if q and d are normalized tf-idf vectors this is
equivalent to using the standard cosine similarity with
no learning (and no synonymy or polysemy).

• W = D, where D is a diagonal matrix: one learns a
re-weighting of tf-idf using labeled data (still no syn-
onymy or polysemy). This is similar to a method pro-
posed in [16].

• W = U>U + I: we constrain the model to be symmet-
ric; the query and target document are treated in the
same way.

2.2.1 Correlated Feature Hashing
Another way to both lower the capacity of our model and

decrease its storage requirements is to share weights among
features.

Hash Kernels (Random Hashing of Words).
In [29] the authors proposed a general technique called

“Hash Kernels” where they approximate the feature repre-
sentation Φ(x) with:

Φ̄j(x) =
X

i∈W:h(i)=j

Φi(x)

where h : W → {1, . . . ,H} is a hash function that reduces
an the feature space down to H dimensions, while maintain-
ing sparsity, where W is the set of initial feature indices.
The software Vowpal Wabbit3 implements this idea (as a
regression task) for joint feature spaces on pairs of objects,
e.g. document/query pairs. In this case, the hash function
used for a pair of words (s, t) is h(s, t) = mod(sP + t,H)
where P is a large prime. This yields

Φ̄j(q, d) =
X

(s,t)∈{1,...,D}2:h(s,t)=j

Φs,t(q, d). (5)

where Φs,t(·) indexes the feature on the word pair (s, t), e.g.
Φs,t(·) = Φ((s−1)D+t)(·). This technique is equivalent to
sharing weights, i.e. constraining Wst = Wkl when h(s, t) =
h(k, l). In this case, the sharing is done pseudo-randomly,
and collisions in the hash table generally results in sharing
weights between term pairs that share no common meaning.

3http://hunch.net/~vw/

Table 1: Correlated Feature Hashing: some exam-
ples of 1-grams along with their top 5 matches (from
the most frequent 30,000 words) by DICE coefficient
generated from Wikipedia.

riemannian manifolds, manifold, tensor, curvature, eu-
clidean

crustacean appendages, shrimp, crustaceans, crab,
arthropods

gurkha nepalese, rangoon, rifles, nepali, kath-
mandu

carotid artery, arteries, aortic, plexus, sinus,
noam chomsky, linguistics, linguist, syntactic,

anarchists
daggers dagger, swords, axes, knives, bows
batgirl gotham, joker, luthor, batman, arkham

Table 2: Correlated Feature Hashing: some exam-
ples of 2-grams along with their top 5 matches (from
the most frequent 30,000 words) by DICE coefficient
generated from Wikipedia.

pearl harbor battleship, destroyers, carriers, planes, tor-
pedoes

star trek starfleet, spock, klingon, voyager, starship
minor leagues inning, hitter, rbi, pitchers, strikeouts
grateful dead phish, allman, joplin, janis, hendrix
james brown funk, funky, sly, aretha, motown
middle east arab, egypt, asia, centuries, syria
black holes hawking, spacetime, galaxies, cosmologi-

cal, relativity

Correlated Feature Hashing.
We thus suggest a technique to share weights (or equiva-

lently hash features) so that collisions actually happens for
terms with close meaning. For that purpose, we first sort
the words in our dictionary in frequency order, so that i = 1
is the most frequent, and i = D is the least frequent. For
each word i = 1, . . . ,D, we calculate its DICE coefficient
[30] with respect to each word j = 1, . . . ,F among the top
F most frequent words:

DICE(i, j) =
2 · cooccur(i, j)

occur(i) + occur(j)

where cooccur(i, j) counts the number of co-occurences for i
and j at the document or sentence level, and occur(i) is the
total number of occurences of word i. Note that these scores
can be calculated from a large corpus of completely unla-
beled documents. For each i, we sort the F scores (largest
first) so that Sp(i) ∈ {1, . . . ,F} correspond to the index of
the pth largest DICE score DICE(i, Sp(i)). We can then
use the Hash Kernel approximation Φ̄(·) given in equation
(5) relying on the “hashing” function:

h(i, j) = (S1(i)− 1)F + S1(j)

This strategy is equivalent to pre-processing our documents
and replacing all the words indexed by i with S1(i). Note
that we have reduced our feature space from D2 features to
H = F2 features. This reduction can be important as shown
in our experiments, see Section 4: e.g. for our Wikipedia
experiments, we have F = 30, 000 as opposed to D = 2.5
Million. Typical examples of the top k matches to a word
using the DICE score are given in Table 1.

Moreover, we can also combine correlated feature hashing



with the low rank W matrix constraint described in Section
2.2. In that case U and V are reduced from D ×N dimen-
sional matrices to F × N matrices instead because the set
of features is no longer the entire dictionary, but the first F
words.

Correlated Feature Hashing by Multiple Binning.
It is also suggested in [29] to hash a feature Φi(·) so that it

contributes to multiple features Φ̄j(·) in the reduced feature
space. This strategy theoretically lessens the consequence
of collisions. In our case, we can construct multiple hash
functions from the values Sp(·), p = 1, . . . , k, i.e. the top k
correlated words according to their DICE scores:

Φ̄j(q, d) =
1

k

X
p = 1, . . . , k

(s, t) ∈ {1, . . . ,D}2 : hp(s, t) = j

Φs,t(q, d) (6)

where

hp(s, t) = (Sp(s)− 1)F + Sp(t). (7)

Equation (6) defines the reduced feature space as the mean
of k feature maps which are built using hashing functions
using the p = 1, . . . , k most correlated words. Equation
(7) defines the hash function for a pair of words i and j
using the pth most correlated words Sp(i) and Sp(j). That
is, the new feature space consists of, for each word in the
original document, the top k most correlated words from
the set of size F of the most frequently occurring words.
Hence as before there are never more than H = F2 possible
features. Overall, this is in fact equivalent to pre-processing
our documents and replacing all the words indexed by i with
S1(i), . . . , Sk(i), with appropriate weights.

Hashing n-grams.
One can also use these techniques to incorporate n-gram

features into the model without requiring a huge feature
representation that would have no way of fitting in memory.
We simply use the DICE coefficient between an n-gram i
and the first F words j = 1, . . . ,F , and proceed as before.
In fact, our feature space size does not increase at all, and
we are free to use any value of n. Some examples of the top
k matches for a 2-gram using the DICE score are given in
Table ??.

2.3 Training Methods
We now discuss how to train the models we have described

in the previous section.

2.3.1 Training the Basic Model
Suppose we are given a set of tuples R (labeled data),

where each tuple contains a query q, a relevant document d+

and an irrelevant (or lower ranked) document d−. We would
like to choose W such that q>Wd+ > q>Wd−, expressing
that d+ should be ranked higher than d−.

For that purpose, we employ the margin ranking loss [18]
which has already been used in several IR methods before
[22, 5, 16], and minimize:X

(q,d+,d−)∈R

max(0, 1− q>Wd+ + q>Wd−). (8)

This optimization problem is solved through stochastic gra-
dient descent, (see, e.g. [5]): iteratively, one picks a random

tuple and makes a gradient step for that tuple:

W ←W+λ(q(d+)>−q(d−)>), if 1−q>Wd++q>Wd− > 0

Obviously, one should exploit the sparsity of q and d when
calculating these updates. To train our model, we choose
the (fixed) learning rate λ which minimizes the training er-
ror. We also suggest to initialize the training with W = I
as this initializes the model to the same solution as a cosine
similarity score. This introduces a prior expressing that the
weight matrix should be close to I, considering term cor-
relation only when it is necessary to increase the score of
a relevant document, or conversely decreasing the score of
a non-relevant document. Termination is then performed
by viewing when the error is no longer improving, using a
validation set.

Stochastic training is highly scalable and is easy to imple-
ment for our model. Our method thus far is a margin rank-
ing perceptron [9] with a particular choice of features (2).
It thus involves a convex optimization problem and is hence
related to a ranking SVM [18, 22], except we have a highly
scalable optimizer. However, we note that such optimiza-
tion cannot be easily applied to probabilistic methods such
as pLSA because of their normalization constraints. Recent
methods like LDA [3] also suffer from scalability issues.

Researchers have also explored optimizing various alter-
native loss functions other than the ranking loss including
optimizing normalized discounted cumulative gain (NDCG)
and mean average precision (MAP) [5, 6, 7, 33]. In fact, one
could use those optimization strategies to train our models
instead of optimizing the ranking loss as well.

2.3.2 Training with a Low Rank W matrix
When the W matrix is constrained, e.g. W = U>V + I,

training is done in a similar way to before, but in this case
by making a gradient step to optimize the parameters U and
V :

U ← U + λV (d+ − d−)q>, if 1− f(q, d+) + f(q, d−) > 0

V ← V + λUq(d+ − d−)>, if 1− f(q, d+) + f(q, d−) > 0.

Note this is no longer a convex optimization problem. In our
experiments we initialized the matrices U and V randomly
using a normal distribution with mean zero and standard
deviation one.

2.3.3 Training with Feature Hashing
Feature hashing simply provides a different choice of fea-

ture map, dependent on the hashing technique chosen. There-
fore, the training techniques described above can be applied
in this case as well.

2.4 Applications

2.4.1 Standard Retrieval
We consider two standard retrieval models: returning rel-

evant documents given a keyword-based query, and finding
related documents with respect to a given query document,
which we call the query-document and document-document
tasks.

Our methods naturally can be trained to solve these tasks.
We note here that so far our models have only included fea-
tures based on the bag-of-words model, but there is nothing
stopping us adding other kinds of features as well. Typical
choices include: features based on the title, body, words in



bold font, the popularity of a page, its PageRank, the URL,
and so on, see e.g. [1]. However, for clarity and simplicity,
this paper solely focuses on raw words.

2.4.2 Content Matching
Our models can also be applied to match other types of

text pairs. In content matching, one is interested in pairing
an online text such as a web page, an email or a chat log
with a targeted advertisement. In this case, click-through
data can provide supervision. Here, again for simplicity, we
assume both text and advert are represented as words. In
practice, however, other types of engineered features could
be added for optimal performance.

3. PRIOR WORK
A tf-idf vector space model and LSI [11] are two main

baselines we will compare to. We already mentioned that
pLSA [19] and LDA [3] both have scalability problems and
are not reported to generally outperform LSA and TF-IDF
[13]. Moreover in the introduction we discussed how sLDA[2]
provides supervision at the document level (via a class label
or regression value) and is not a task of learning to rank,
whereas here we study supervision at the (query,documents)
level. In this section, we now discuss other relevant methods.

In [16] the authors learned the weights of an orthogonal
vector space model on Wikipedia links, improving over the
OKAPI method. Joachims et al.[22] trained a SVM with
hand-designed features based on the title, body, search en-
gines rankings and the URL. Burges et al.[5] proposed a
neural network method using a similar set of features (569
in total). In contrast we limited ourselves to body text (not
using title, URL, etc.) and train on at most D2 = 900 mil-
lion features.

Query Expansion, often referred to as blind relevance feed-
back, is another way to deal with synonyms, but requires
manual tuning and does not always yield a consistent im-
provement [34].

The authors of [17] used a related model to the ones we
describe, but for the task of image retrieval, and [15] also
used a related (regression-based) method for advert place-
ment. They both use the idea of using the cross product
space of features in the perceptron algorithm as in equation
(2) which is implemented in related software to these two
publications, PAMIR4 and Vowpal Wabbit5. The task of
document retrieval, and the use of low rank matrices, is not
studied.

Several authors [28, 23] have proposed interesting non-
linear versions of (unsupervised) LSI using neural networks
and showed they outperform LSI or pLSA. However, in the
case of [28] we note their method might require considerable
computationally expense, and hence they only used a dictio-
nary size of 2000. Finally, [31] proposes a “supervised” LSI
for classification. This has a similar sounding title to ours,
but is quite different because it is based on applying LSI to
document classification rather than improving ranking via
known preference relations. The authors of [12] proposed
“Explicit Semantic Analysis” which represents the meaning
of texts in a high-dimensional space of concepts by build-
ing a feature space derived from the document categories of
an encyclopedia, e.g. Wikipedia. In the new space, cosine

4http://www.idiap.ch/pamir/
5http://hunch.net/~vw/

similarity is applied. SSI could be applied to such feature
representations so that they are not agnostic to a particular
supervised task as well.

Another related area of research is in distance metric learn-
ing [32, 21, 14]. Methods like LMNN [32] also learn a model
similar to the basic model (2.1) with the full matrix W (but
not with our improvements to this model). They constrain
during the optimization thatW should be a positive semidef-
inite matrix. Their method has considerable computational
cost. For example, even after a carefull optimization of the
algorithm, it still needs 3.5 hours to train on 60,000 exam-
ples and 169 features from a handwritten digit classifiction
problem. This would hence not be scalable for large scale
text ranking experiments. Nevertheless, Chechik et al. com-
pared LMNN [32], LEGO [21] and MCML [14] to a stochas-
tic gradient method with a full matrix W (the basic model
(2.1)) on a small image ranking task and report in fact that
the stochastic method provides both improved results and
efficiency6.

4. EXPERIMENTAL STUDY
Learning a model of term correlations over a large vocabu-

lary is a considerable challenge that requires a large amount
of training data. Standard retrieval datasets like TREC7 or
LETOR [24] contain only a few hundred training queries,
and are hence too small for that purpose. Moreover, some
datasets only provide few pre-processed features like page-
rank, or BM25, and not the actual words. Click-through
from web search engines could provide valuable supervision.
However, such data is not publicly available, and hence ex-
periments on such data are not reproducible.

We hence conducted most experiments on Wikipedia and
used links within Wikipedia to build a large scale ranking
task. Thanks to its abundant, high-quality labeling and
structuring, Wikipedia has been exploited in a number of
applications such as disambiguation [4, 10], text categoriza-
tion [26, 20], relationship extraction [27, 8], and searching
[25] etc. Specifically, Wikipedia link structures were also
used in [26, 25, 27].

We considered several tasks: document-document retrieval
described in Section 4.1, query-document retrieval described
in Section 4.2. In Section 4.3 we also give results on an Inter-
net advertising task using proprietary data from an online
advertising company.

In these experiments we compare our approach, Super-
vised Semantic Indexing (SSI), to the following methods: tf-
idf with cosine similarity (TFIDF), Query Expansion (QE),
LSI8, αLSI + (1 − α) TFIDF and a margin ranking per-
ceptron using Hash Kernels. Moreover SSI with an “un-
constrained W” is just a margin ranking perceptron with a
particular choice of feature map, and SSI using hash ker-
nels is the approach of [29] employing a ranking loss. For
LSI we report the best value of α and embedding dimension
(50, 100, 200, 500, 750 or 1000), optimized on the training
set ranking loss. We then report the low rank version of
SSI using the same choice of dimension. Query Expansion

6Oral presentation at the (Snowbird) Machine Learn-
ing Workshop, see http://snowbird.djvuzone.org/
abstracts/119.pdf
7http://trec.nist.gov/
8We use the SVDLIBC software http://tedlab.mit.edu/
~dr/svdlibc/ and the cosine distance in the latent concept
space.



involves applying TFIDF and then adding the mean vector
β

PE
i=1 dri of the top E retrieved documents multiplied by

a weighting β to the query, and applying TFIDF again. We
report the error rate where β and E are optimized using the
training set ranking loss.

For each method, we measure the ranking loss (the per-
centage of tuples in R that are incorrectly ordered), preci-
sion P (n) at position n = 10 (P@10) and the mean average
precision (MAP), as well as their standard errors. For com-
putational reasons, MAP and P@10 were measured by av-
eraging over a fixed set of 1000 test queries, where for each
query the linked test set documents plus random subsets of
10,000 documents were used as the database, rather than
the whole testing set. The ranking loss is measured using
100,000 testing tuples (i.e. 100,000 queries, and for each
query one random positive and one random negative target
document were selected).

4.1 Document-Document Retrieval
We considered a set of 1,828,645 English Wikipedia doc-

uments as a database, and split the 24,667,286 links9 ran-
domly into two portions, 70% for training and 30% for test-
ing. We then considered the following task: given a query
document q, rank the other documents such that if q links
to d then d should be highly ranked.

Limited Dictionary Size.
In our first experiments, we used only the top 30,000 most

frequent words. This allowed us to compare all methods with
the proposed approach, Supervised Semantic Indexing (SSI),
using a completely unconstrained W matrix as in equation
(1). LSI is also feasible to compute in this setting. We com-
pare several variants of our approach, as detailed in Section
2.2.

Results on the test set are given in Table 2. All the vari-
ants of our method SSI strongly outperform the existing
techniques TFIDF, LSI and QE. SSI with unconstrained W
performs worse than the low rank counterparts – probably
because it has too much capacity given the training set size.
Non-symmetric low-rank SSI W = U>V +I slightly outper-
forms its symmetric counterpart W = U>U + I. SSI with
Diagonal SSI W = D is only a learned re-weighting of word
weights, but still slightly outperforms TFIDF. In terms of
our baselines, LSI is slightly better than TFIDF but QE in
this case does not improve much over TFIDF, perhaps be-
cause of the difficulty of this task, i.e. there may too often
many irrelevant documents in the top E documents initially
retrieved for QE to help.

Unlimited Dictionary Size.
In our second experiment we no longer constrained meth-

ods to a fixed dictionary size, so all 2.5 million words are
used. Due to being unable to compute LSI for the full dic-
tionary size, we used the LSI computed in the previous ex-
periment on 30,000 words and combined it with TFIDF us-
ing the entire dictionary. In this setting we compared our
baselines with the low rank SSI method W = (U>V )n + I,
where n means that we constrained the rows of U and V
for infrequent words (i.e. all words apart from the most fre-
quent n) to equal zero. The reason for this constraint is

9We removed links to calendar years as they provide little
information while being very frequent.

that it can stop the method overfitting: if a word is used
in one document only then its embedding can take on any
value independent of its content. Infrequent words are still
used in the diagonal of the matrix (via the +I term). The
results, given in Table 3, show that using this constraint
outperforms an unconstrained choice of n = 2.5M . Figure
1 shows scatter plots where SSI outperforms the baselines
TFIDF and LSI in terms of average precision.

Overall, compared to the baselines the same trends are
observed as in the limited dictionary case, indicating that
the restriction in the previous experiment did not bias the
results in favor of any one algorithm. Note also that as a
page has on average just over 3 test set links to other pages,
the maximum P@10 one can achieve in this case is 0.31,
while our best model reaches 0.263 for this measure.

Hash Kernels and Correlated Feature Hashing.
On the full dictionary size experiments in Table 3 we

also compare Hash Kernels [29] with our Correlated Fea-
ture Hashing method described in Section 2.2.1. For Hash
Kernels we tried several sizes of hash table H (1M, 3M and
6M), we also tried adding a diagonal to the matrix learned
in a similar way as is done for LSI. We note that if the hash
table is big enough this method is equivalent to SSI with an
unconstrained W , however for the hash sizes we tried Hash
Kernels did not perform as well. For correlated feature hash-
ing, we simply used the SSI model W = (U>V )30k + I from
the 7th row in the table to model the most frequent 30,000
words and trained a second model using equation (6) with
k = 5 to model all other words, and combined the two mod-
els with a mixing factor (which was also learned). The result
“SSI: CFH (1-grams)”is the best performing method we have
found. Doing the same trick but with 2-grams instead also
improved over Low Rank SSI, but not by as much. Com-
bining both 1-grams and 2-grams, however did not improve
over 1-grams alone.

Training and Testing Splits.
In some cases, one might be worried that our experimental

setup has split training and testing data only by partition-
ing the links, but not the documents, hence performance of
our model when new unseen documents are added to the
database might be in question. We therefore also tested
an experimental setup where the test set of documents is
completely separate from the training set of documents, by
completely removing all training set links between training
and testing documents. In fact, this does not alter the per-
formance significantly, as shown in Table 4. This outlines
that our model can accommodate a growing corpus without
frequent re-training.

Importance of the Latent Concept Dimension.
In the above experiments we simply chose the dimension

N of the low rank matrices to be the same as the best la-
tent concept dimension for LSI. However, we also tried some
experiments varying N and found that the error rates are
fairly invariant to this parameter. For example, using a lim-
ited dictionary size of 30,000 words we achieve a ranking
loss 0.39%, 0.30% or 0.31% for N=100, 200, 500 using a
W = U>V + I type model.



Table 3: Empirical results for document-document ranking on Wikipedia (limited dictionary size of D =30,000
words).

Algorithm Parameters Rank-Loss MAP P@10
TFIDF 0 1.62% 0.329±0.010 0.163±0.006
QE 2 1.62% 0.330±0.010 0.163±0.006
LSI 1000D 4.79% 0.158±0.006 0.098±0.005
αLSI + (1− α)TFIDF 200D+1 1.28% 0.346±0.011 0.170±0.007
SSI: W = D D 1.41% 0.355±0.009 0.177±0.007
SSI: W unconstrained D2 0.41% 0.477±0.011 0.212±0.007
SSI: W = U>U + I 200D 0.41% 0.506±0.012 0.225±0.007
SSI: W = U>V + I 400D 0.30% 0.517±0.011 0.229±0.007

Table 4: Empirical results for document-document ranking on Wikipedia (unlimited dictionary size, all
D = 2.5M words). Results for random hashing (i.e., hash kernels [29]) and correlated feature hashing (CFH)
on all words are included.

Algorithm Params Rank Loss MAP P@10
TFIDF 0 0.842% 0.432±0.012 0.193±0.007
QE 2 0.842% 0.432±0.012 0.193±0.007
αLSI30k + (1− α)TFIDF 200× 30k + 1 0.721% 0.433±0.012 0.193±0.007

SSI: W = (U>U)2.5M + I 50D 0.200% 0.503±0.012 0.220±0.007
SSI: W = (U>V )100k + I 100× 100k 0.178% 0.536±0.012 0.233±0.008
SSI: W = (U>V )60k + I 100× 60k 0.172% 0.541±0.012 0.232±0.008
SSI: W = (U>V )30k + I 200× 30k 0.158% 0.547±0.012 0.239±0.008
SSI: Hash Kernels [29] 1M 2.98% 0.239±0.009 0.127±0.005
SSI: Hash Kernels 3M 1.75% 0.301±0.01 0.152±0.006
SSI: Hash Kernels 6M 1.37% 0.335±0.01 0.164±0.007
SSI: Hash Kernels + αI 1M+1 0.525% 0.466±0.011 0.207±0.007
SSI: Hash Kernels + αI 3M+1 0.370% 0.474±0.012 0.211±0.007
SSI: Hash Kernels + αI 6M+1 0.347% 0.485±0.011 0.215±0.007
SSI: CFH (2-grams) 300× 30k 0.149% 0.559±0.012 0.249±0.007
SSI: CFH (1-grams) 300× 30k 0.119% 0.614±0.012 0.263±0.008

Table 5: Empirical results for document-document ranking in two train/test setups: partitioning into
train+test sets of links, or into train+test sets of documents with no cross-links (limited dictionary size
of 30,000 words). The two setups yield similar results.

Algorithm Testing Setup Rank Loss MAP P@10

SSI: W = U>V + I Partitioned links 0.407% 0.506±0.012 0.225±0.007
SSI: W = U>V + I Partitioned docs+links 0.401% 0.503±0.010 0.225±0.006
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Figure 1: Scatter plots of Average Precision for 500
documents: (a) SSI30k+I2.5M vs. TFIDF2.5M , (b)
SSI30k+I2.5M vs. the best combination of LSI30k and
TFIDF2.5M .

Importance of the Identity matrix for Low Rank repre-
sentations.

The addition of the identity term in our model W =
U>V +I allows this model to automatically learn the trade-
off between using the low dimensional space and a classi-
cal vector space model. The diagonal elements count when
there are exact matches (co-ocurrences) of words between
the documents. The off-diagonal (approximated with a low
rank representation) captures topics and synonyms. Using
only W = I yields the inferior TFIDF model. Using only
W = U>V also does not work as well as W = U>V + I.
Indeed, we obtain a mean average precision of 0.42 with
the former, and 0.51 with the latter. Similar results can be
seen with the error rate of LSI with or without adding the
(1−α)TFIDF term, however for LSI this modification seems
rather ad-hoc rather than being a natural constraint on the
general form of W as in our method.

Ignoring the Diagonal.
On the other hand, for some tasks it is not possible to



use the identity matrix at all, e.g. if one wishes to per-
form cross-language retrieval. Out of curiosity, we thus also
tested our method SSI training a dense matrix W where the
diagonal is constrained to be zero10, so only synonyms can
be used. This obtained a test ranking loss of 0.69% (limited
dictionary size case), compare to 0.41% with the diagonal.

Training Speed.
Training our model over the 1.2M documents (where the

number of triplets R is obviously much larger) takes on
the order of a few days on standard machine (single CPU)
with our current implementation. As triplets are sampled
stochastically, not all possible triplets have been seen in this
time, however the generalization error on validation data has
reached a minimum by that time.

4.2 Query-Document Retrieval
We also tested our approach in a query-document setup.

We used the same setup as before but we constructed queries
by keeping only k random words from query documents in an
attempt to mimic a “keyword search”. First, using the same
setup as in the previous section with a limited dictionary
size of 30,000 words we present results for keyword queries
of length k = 5, 10 and 20 in Table 5. SSI yields similar im-
provements as in the document-document retrieval case over
the baselines. Here, we do not report full results for Query
Expansion, however it did not give large improvements over
TFIDF, e.g. for the k = 10 case we obtain 0.084 MAP and
0.0376 P@10 for QE at best. Results for k = 10 using an
unconstrained dictionary are given in Table 6. Again, SSI
yields similar improvements. Overall, non-symmetric SSI
gives a slight but consistent improvement over symmetric
SSI. Changing the embedding dimension N (capacity) did
not appear to effect this, for example for k = 10 andN = 100
we obtain 3.11% / 0.215 / 0.097 for Rank Loss/MAP/P@10
using SSI W = U>U + I and 2.93% / 0.235 / 0.102 using
SSI W = U>V + I (results in Table 5 are for N = 200). Fi-
nally, correlated feature hashing again improved over models
without hashing.

4.3 Content Matching
We present results on matching adverts to web pages, a

problem closely related to document retrieval. We obtained
proprietary data from an online advertising company of the
form of pairs of web pages and adverts that were clicked
while displayed on that page. We only considered clicks in
position 1 and discarded the sessions in which none of the
ads was clicked. This is a way to circumvent the well known
position bias problem — the fact that links appearing in
lower positions are less likely to be clicked even if they are
relevant. Indeed, by construction, every negative example
comes from a slate of adverts in which there was a click in a
lower position; it is thus likely that the user examined that
negative example but deemed it irrelevant (as opposed to
the user not clicking because he did not even look at the
advert).

We consider these (webpage,clicked-on-ad) pairs as posi-
tive examples (q, d+), and any other randomly chosen ad is
considered as a negative example d− for that query page.
1.9M pairs were used for training and 100,000 pairs for test-

10Note that the model W = U>V with the identity achieved
a ranking loss of 0.56%, however this model can represent
at least some of the diagonal.

ing. The web pages contained 87 features (words) on aver-
age, while the ads contained 19 features on average. The two
classes (clicks and no-clicks) are roughly balanced. From the
way we construct the dataset, this means than when a user
clicks on an advert, he/she clicks about half of the time on
the one in the first position.

We compared TFIDF, Hash Kernels and Low Rank SSI
on this task. The results are given in Table 7. In this
case TFIDF performs very poorly, often the positive (page,
ad) pairs share very few, if any, words, and even if they
do this does not appear to be very discriminative. Hash
Kernels and Low Rank SSI appear to perform rather sim-
ilarly, both strongly outperforming TFIDF. The rank loss
on this dataset is two orders of magnitude higher than on
the Wikipedia experiments described in the previous sec-
tions. This is probably due to a combination of two factors:
first, the positive and negative classes are balanced, whereas
there was only a few positive documents in the Wikipedia
experiments; and second, clicks data are much more noisy.

We might add, however, that at test time, Low Rank SSI
has a considerable advantage over Hash Kernels in terms
of speed. As the vectors Uq and V d can be cached for each
page and ad, a matching operation only requires N multipli-
cations (a dot product in the “embedding” space). However,
for hash kernels |q||d| hashing operations and multiplications
have to be performed, where | · | means the number of non-
zero elements. For values such as |q| = 100, |d| = 100 and
N = 100 that would mean Hash Kernels would be around
100 times slower than Low Rank SSI at test time, and this
difference gets larger if more features are used.

Table 8: Content Matching experiments on propri-
etary data of web-page/advertisement pairs.

Algorithm Parameters Rank Loss
TFIDF 0 45.60%
SSI: Hash Kernels [29] 1M 26.15%
SSI: Hash Kernels 10M 25.56%
SSI: W = (U>V )10k + I 50× 10k = 0.5M 25.83%
SSI: W = (U>V )20k + I 50× 20k = 1M 26.68%
SSI: W = (U>V )30k + I 50× 30k = 1.5M 26.98%

4.4 Influence of Training Set Size
As stated earlier, learning a model from raw word features

requires considerably more training data than for models
based on hand-designed features. This can be a problem
when little data is available for training. However, a model
which can benefit from very training sets can also be an ad-
vantage, especially in today’s web search environment where
search engines collect a considerable amount of preference
data from user behavior logs. Table 8 reports results ob-
tained over different sized training sets. Indeed, one can no-
tice that our model succeed in leveraging from large datasets:
the more training data available, the lower the ranking loss.

5. DISCUSSION
We have described a versatile, powerful set of discrimina-

tively trained models for document ranking. Many “learning
to rank” papers have focused on the problem of selecting the
objective to optimize (given a fixed class of functions) and
typically use a relatively small number of hand-engineered



Table 6: Empirical results for query-document ranking on Wikipedia where query has k keywords (this
experiment uses a limited dictionary size of D = 30, 000 words). For each k we measure the ranking loss, MAP
and P@10 metrics.

k = 5
Algorithm Params Rank Loss MAP P@10
TFIDF 0 21.6% 0.047±0.004 0.023±0.0007
αLSI + (1− α)TFIDF 200D+1 14.2% 0.049±0.004 0.023±0.0007
SSI: W = U>U + I 200D 4.80% 0.161±0.007 0.079±0.003
SSI: W = U>V + I 400D 4.37% 0.166±0.007 0.083±0.003

k = 10
Algorithm Params Rank Loss MAP P@10
TFIDF 0 14.0% 0.083±0.006 0.035±0.001
αLSI + (1− α)TFIDF 200D+1 9.73% 0.089±0.006 0.037±0.001
SSI: W = U>U + I 200D 3.10% 0.2138±0.0009 0.095±0.004
SSI: W = U>V + I 400D 2.91% 0.229±0.009 0.100±0.004

k = 20
Algorithm Params Rank Loss MAP P@10
TFIDF 0 9.14% 0.128±0.007 0.054±0.002
αLSI + (1− α)TFIDF 200D+1 6.36% 0.133±0.007 0.059±0.002
SSI: W = U>U + I 200D 1.87% 0.287±0.01 0.126±0.005
SSI: W = U>V + I 400D 1.80% 0.302±0.01 0.130±0.005

Table 7: Empirical results for query-document ranking for k = 10 keywords (unlimited dictionary size of
D = 2.5 million words).

Algorithm Params Rank MAP P@10
TFIDF 0 12.86% 0.128±0.008 0.035±0.003
αLSI + (1− α)TFIDF 200× 30k+1 8.95% 0.133±0.008 0.051±0.003
SSI: W = U>V + I 400× 30k 3.02% 0.261±0.010 0.113±0.004

Table 9: Influence of Training Set Size over
Wikipedia Data: training data varies from 1% to
30% of the links. In all cases, the test data cor-
responds to 70% of the links. The model uses the
most frequent 30000 words, and has 100 output di-
mensions.

Training Data Rank Loss
1% 2.5%
4% 2.0%
10% 1.4%
30% 1.1%

features as input. This work is orthogonal to those works
as it studies models with large feature sets generated by all
pairs of words between the query and target texts. The chal-
lenge here is that such feature spaces are very large, and we
thus presented low rank models that deal with the memory,
speed and capacity control issues. In fact, all of our proposed
methods can be used in conjunction with other features and
different objective functions explored in previous work for
further gains.

Many generalizations of our work are possible: adding
more features into our models as we just mentioned, gener-
alizing to other kinds of nonlinear models, and exploring the
use of the same models for other tasks such as question an-
swering. In general, web search and other standard retrieval
tasks currently often depend on entering query keywords
which are likely to be contained in the target document,

rather than the user directly describing what they want to
find. Our models are capable of learning to rank using either
the former or the latter.
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