Semi-Supervised Sequence Labeling with Self-Learned Features

Yanjun Qi*, Pavel KuksaT, Ronan Collobert*, Kunihiko Sadamasa*, Koray Kavukcuoglui and Jason Weston®
*Machine Learning Department, NEC Labs America Inc, Princeton, NJ, USA.
{yanjun,collober,kunihiko} @nec-labs.com
TDept of Computer Science, Rutgers University, Piscataway, NJ, USA
pkuksa@cs.rutgers.edu
iCOmputer Science Dept, New York University, New York, NY, USA
koray@cs.nyu.edu
§Google Research NY, New York, NY, USA
Jjaseweston @ gmail.com

Abstract—Typical information extraction (IE) systems can be
seen as tasks assigning labels to words in a natural language
sequence. The performance is restricted by the availability
of labeled words. To tackle this issue, we propose a semi-
supervised approach to improve the sequence labeling pro-
cedure in IE through a class of algorithms with self-learned
features (SLF). A supervised classifier can be trained with
annotated text sequences and used to classify each word in
a large set of unannotated sentences. By averaging predicted
labels over all cases in the unlabeled corpus, SLF training
builds class label distribution patterns for each word (or word
attribute) in the dictionary and re-trains the current model
iteratively adding these distributions as extra word features.
Basic SLF models how likely a word could be assigned to target
class types. Several extensions are proposed, such as learning
words’ class boundary distributions. SLF exhibits robust and
scalable behaviour and is easy to tune. We applied this
approach on four classical IE tasks: named entity recognition
(German and English), part-of-speech tagging (English) and
one gene name recognition corpus. Experimental results show
effective improvements over the supervised baselines on all
tasks. In addition, when compared with the closely related
self-training idea, this approach shows favorable advantages.

Keywords-semi-supervised learning; semi-supervised feature
learning; information extraction; structural output learning;
sequence labeling; self-learned features

I. INTRODUCTION

Several typical problems in natural language processing
(NLP) can be seen as the task of assigning labels to words
in a text sequence. It is quite difficult to obtain labeled
training sentences with word-level annotations compared
with document-level classification tasks (such as text catego-
rization), because hand-labeling individual words and word
boundaries is much harder than assigning article-level class
labels [1]. Supervised techniques have yielded great success
in the NLP community, even though they are restricted by
the expense of annotating the corpus. Semi-supervised learn-
ing has become one of the most natural forms of training for
language processing tasks, since unlabeled language data is
plentiful in this field.

Self-training [2], [3], [4], and co-training [5], [6] are pop-

ular semi-supervised methods applied in natural language
processing tasks. They utilize large sets of unlabeled corpora
and try to improve over supervised methods by iteratively
adding self-labeled examples predicted by the current model.
However, they are vulnerable to the incestuous training bias
problem [7], [8], i.e. examples may be consistently misla-
beled making the model even worse on the next iteration.
To combat this, several authors have proposed schemes for
only adding examples that meet a selection criterion [4], [7],
[9], but these heuristic choices still might yield unreliable
results.

In this paper' we propose a simple and scalable
semi-supervised strategy that works by providing semi-
supervision at the level of feature attributes rather than
examples. Under the assumption that words (and word
attributes) carry rich label information, we learn to derive
a group of features (which we name “self-learned features”
(SLF)) that are related to the distribution of target classes
through a large unlabeled corpus. These distribution patterns
are used as extra features to retrain our base supervised
classifier in an iterative fashion. Basic SLF learns to model
words’ probabilities to every possible target class. We also
propose several extensions to our basic approach: (1) Bound-
ary SLF learns to represent words’ class boundary patterns;
(2) Attribute SLF tries to model target class distribution
patterns for each value of the discrete word attributes (for
instance, capitalization properties of words); (3) Clustered
SLF clusters word according to SLF values and the derived
cluster ID would be used as novel extra features.

We tested our approach on four classic sequence labeling
tasks: two CoNLL-2003 [11] shared tasks (German and
English Named Entity Recognition (NER)), one English
Part-of-Speech tagging [12] and the GM BioCreativell com-
petition (gene name recognition) [13]. Two state-of-the-art
natural language processing systems are used as baseline
supervised methods to train SLF: (a) a neural network (NN)
model [14] for unified NLP (b) a conditional random field

IThis paper is an extension of a poster publication [10].

(CRF) [15] which has shown success in many information
extraction tasks. We observed improvements from using SLF
in various setups: compared to the baseline classifiers, to
semi-supervised auxillary task and to self-training, whenever
we applied it. In particular we achieved a state-of-the art
result of 75.72 F1 on the German NER task and token error
rate 2.73% on the English POS task. Moreover, SLF models
exhibit robust behavior since noisy self-labeled examples are
not added (as in self-training). It is also highly scalable to
large unlabeled corpora (for instance, English Wikipedia).

II. METHODS

Unlike most popular semi-supervised approaches (details
in Section IV), we propose to induce features from a large
corpus of unannotated examples in a supervised fashion, and
then use these features to augment the feature space of the
labeled set. Since this is an orthogonal method for improving
accuracy, it can be combined with many of the other semi-
supervised methods (section 1V).

SLF relies on the key observation that individual words
carry significant label information, since they are fundamen-
tal building blocks of NLP systems. In the following, we
describe our basic model: word-level SLF first, and then go
on to describe several extensions.

We consider the setting where one is given labeled training
examples {(x;,yi)}i=1,.., € X x) and a large unlabeled
set of examples {x}};—1.. v € X where the unlabeled set
is much larger than the labeled one (U > L).

In particular for the sequence labeling tasks which we
focus on in this paper, X’ is the set of all sequences composed
of elements which take on a finite set of possible values,
e.g. sequences of words (or in the general case this could
include other discrete types of word attributes as well, e.g.
capital types, POS tags, stem-ends, etc.). That is, we will
assume an input sequence X = (71,...,7x|), Where [x|
means the length of the sequence. Its jy, item is x; € D,
with D representing a dictionary of size |D|, for instance a
vocabulary of English words. The labels Y € {1,...,K}
are the K classes a sequence can be assigned to, e.g. NER
system labels atomic elements in the sentence into categories
such as “PERSON”, “COMPANY”, or “LOCATION".

A. Basic method: Word SLF

We define the basic self-learned features for a given word
w € D as a feature vector SLF(w) € RX which models the
probability to each target class this word might be assigned
with,

SLF(w) = (SLF(w)1,...,SLF(w)k),

where
SLF(w); = P(y = i|w, where w € x), (1)

That is, the 7" dimension measures the probability of label
y = 1 being assigned given that word w is present in the

input sequence x (Figure 1). This distribution is of course
unknown but can be estimated from the training set or,
critically, can be re-estimated using an unlabeled corpus by
applying a trained classifier.
We thus define the empirical SLF for a given word as:
;. * — *
SF(, - TS O=inwexy
HE :w e x;}
where f(-) is a classifier trained to predict y €) given
x € X. In equation 2 the numerator counts the number of
sequences that have been classified as type ¢ and include
the word w. The denominator describes the total number
of sequences including the word w in the unlabeled corpus.
Essentially this distribution measures the proportion of text
sequences assigned as class ¢ given word w is present. This
distribution could be smoothed by a Bayesian Beta Prior in
extreme cases (e.g. infrequent words) [16].
We hence propose the following iterative semi-supervised
training algorithm (pseudo-code in Table I):
1) Define the feature representation ¢(w) for a word w,
and the representation for an example, sequence X, as:

CD(X) = (¢($1)a) ¢($|x‘))

2) Train a classifier f(-) on training examples (x;,y;)
using the feature representation ®(-).

3) Augment the representation of words with their SLF
(word-class distributions in the basic SLF model):

P(w) = (¢(w), SLF(w)) 3)

using the current model f(-) to compute equation (2)
and redefine ®(x) = (¢(z1),...,d(zx|))-
4) Tterate steps 2-3 until performance does not improve.

B. Modified Word SLF in Window-based Sequence Labeling

Many NLP tasks can be treated as sequence segmentation
or sequence labeling where prediction performance is mea-
sured with word-level evaluations. A classical way to handle
these tasks is to utilize a window-based approach where the
tagging algorithm considers a window of a fixed size around
each word we want to label (Figure 1).

To apply SLF learning for this case, we propose the mod-
ified self-learned features for words where we are interested
in class distributions only for the words to be labeled:

ST, < WO =1 A 0= ()}
SLF(w); = {k :w = (x})m}] 7

m = (] +1)/2

4)

where

Here we only count the sequences (sliding text windows)
whose middle word (with the index m) matches to the word
w. However, we still augment all words in the window with
SLF(-) features. This actually gives a pattern of possible
context (neighboring) tags for the middle word of interest.

Table T
PSEUDO-CODE FOR BASIC SLF.

Algorithm of “‘Semi-Supervised Sequence Labeling with Self-Learned Features”

4: Tterate steps 2 to 3 until stopping criterion is met.

1: Define the feature representation ¢(w) for a word w, and the representation for an example (sequence) x as P (x);
2: Train a classifier f(-) on training examples (x;,y;) using the feature representation ®(-);
3: Augment the representation of words to ¢(w) (Equation 3), with their empirical SLF estimated on unlabeled data U;

Input Sentence (Text Window)

word of interest

text the cat sat on the
indices X1 Xz X3 X4 Xs
tags Y1 Y2 Y3 Ya ¥s

v

Self-Learned Features (SLF)

o

LiLpl.
vt

Figure 1. Modified SLF for window-based sequence labeling. Inputs x
are windows of a fixed size (|x| = 5 in this case). The middle word in the
window is the word to be tagged.

C. Extension (1): Attribute SLF

In the basic SLF, we learn to derive the class-distribution
features for each word in the vocabulary from a large
unlabeled corpus. Besides words, there exist a number of
word attributes that are important for typical NLP problems,
such as capitalization properties of words, stem-ends and
prefix strings. These attributes are normally discrete and
from a finite dictionary of values. For instance, the attribute
“capitalization” could have values of “YES” (the first letter
of the word is capital letter) or “NO”.

Similar to words, some important attributes describing
words also carry rich class information, because they are also
essential building blocks of natural languages. We could treat
them the same way as words and learn their SLF from the
unlabeled set: we call this *Attribute SLF’ (ASLF) learning.

Suppose an input example x is a sequence of words, plus
the “capitalization” of each word. Assuming c represents the
“capitalization” of each word, each element in the sequence
x has the format x; = (w, ¢), and Equation 1 is modified to
handle c:

SLF'(¢); = P(y = i|c, where ¢ € x),)

We then augment the representation of words with both the
word SLF and attribute SLF compared to Equation 3 in the
iterative algorithm (Table I):

& (w,¢) = (p(w),SLF(w), ¢'(c),SLF (¢)) (6)

Table II
WORDS CARRYING RICH CLASS BOUNDARY INFORMATION

Each row gives an example where the words next (or very close) to the
named entity (person or gene name) are informative to the target class.
... former captain [Chris Lewis] ...

... [Washington] said ...

... [Hoddle] said ...

... [CRKL], an adapter protein ...

.. [SH2-SH3-SH3] adapter protein ...

This simple extension could be applied to any attribute that
is discrete and from a finite dictionary of values.

D. Extension (2): Boundary SLF

For NLP tasks like named entity recognition or gene name
recognition, rare words (words with very low frequency)
are normally the hardest examples to label in the sequence
since the training set could hardly cover them. In this case,
we could consider to model those words which happen
frequently before (or after) a certain class label. Later, when
a rare word needs to be labeled, its neighborhood words
might be able to provide strong indications of its target class
types if these words are always in the boundary of a certain
class. Table II lists several examplar words that are usually
very close to named entities (person names or gene names).
Clearly some words carry strong class boundary information.

Based on the above observation, we extend the basic SLF
strategy to incorporate the class bounary distributions. Basic
SLF (Equation 1) models the probability of label y = ¢ being
assigned given the word w present in the input sequence x.
Boundary SLF (BSLF) models how likely the word w is
right before or after a certain class (assuming class t):

SLF"(w)1 P(y; = tlw € {(%i)1, -+, (Xi)m-1})
SLE" (w)y P(y; = tlw € {(xi)m+1,- -+, (Xi)xi 1 })

where m is the middle index in a given “window” x;
(sequence), as before. Thus, similar to Equation 3, we have

1

9" (w) = (¢(w), SLF(w), SLF (w)) @
We show experimentally that this extension effectively im-
proves the gene name recognition task which suffers a lot
from the “rare word” problem.

E. Extension (3): Clustered SLF

For a given word w (or attribute), SLF defines a feature
vector SLF(w) € RX'. K’ = K in basic SLF and its
value depends on the SLF extension (Figure 1). Words
exhibiting similar empirical class distribution patterns have

similar SLF feature vectors. Thus grouping them together
might give stronger indications of target sequence labels or
class boundaries.

Here we explored a vector quantization (VQ)
technique[17] to convert SLF distibution vectors to
prototype vectors. VQ clusters (or quantizes) groups of
values together instead of one at a time. The groups of
values are called input vectors and the quantization levels
are called code vectors. The set of all code vectors is called
the codebook. Quantization techniques allow the modeling
of SLF feature vectors by the distribution of codebook
vectors.

Formally speaking, we have SLF feature vectors for every
word w in the dictionary D,

where SLF(w;) € RX'. We use C to represent the
codebook set which includes N codebook vectors, C =
{C1,Cy,...,CN}.

Then VQ tries to optimize (minimize) the following
objective function, to find the codebook C and to round off
the input vectors into code vectors,

D
S S IISLE(wg) — el ®)
d=1
For each input vector SLF(w,), VQ tries to find the best
code vector C}, it could be quantized into (to optimize the
above function). Each vector SLF(w) would be assigned to
one of the code vectors in the codebook after VQ step.
Thus we use the indices of this code vector as the new
feature for the word w. Essentially the whole process clusters
all the words in the dictionary into multiple (V) clusters
and then uses the cluster ID as the feature representation
instead (a binary vector with all zeros apart from the ID*?
dimension which is set to 1). Since this is basically a k-
means clustering, we call this extension ‘“clustered SLF”
(CSLF).

F. Advantages of SLF

Like self-training and co-training our algorithm (i) iter-
atively tries to improve its model; and (ii) is a wrapper
approach that can use a supervised (or semi-supervised)
classifier as a “base learner”. However, our algorithm also
has the following benefits:

o It has no incestuous bias from introducing new ex-
amples with incorrect labels as in self-training, as no
examples are added.

« It does not require tricky selection heuristics as in self-
training algorithms.

o The supervised model can learn if the SLF features are
relevant or not (it can ignore or downweight them if it
wants).

o The constructed SLF features contain information about
the potential label of an example containing these

words. This is collected by averaging over many un-
labeled examples hence infrequent mistakes can be
smoothed out and potentially corrected on the next
iteration.

o In a sequence labeling task, the SLF features for
neighboring words are highly informative for the word
to be labeled.

o This algorithm is highly scalable (it adds a few features
to the model, not lots of extra examples).

In addition, SLF vectors give a robust abstraction of
predicted class (or boundary) distributions for each word
(or discrete attribute) in a large unlabeled corpus. This semi-
supervsied strategy provides a SLF matrix (having size Dx K
for basic SLF where D is the size of the word vocabulary
and K is the number of possible values for the target
label). This matrix can be trained before-hand and utilized
later for NLP prediction as long as the basic words are
available. For example, in the case of online NER prediction,
efficiency and speed are critical for online systems. Some
of the features, such as part-of-speech tags, are quite slow
to extract online. In this situation, we could make NER
predictions relying on only basic word features (that are
fast to extract, such as low-case word and capitalzation
information), plus the well-trained SLF patterns from better
models that incorporate harder to compute features. In the
Results section we show that this setting achieves much
better performance compared to sequence tagging relying
only on basic features.

III. BASELINE SEQUENCE LABELING SYSTEMS

In this paper, we focus on NLP sequence labeling prob-
lems which can be treated as multi-class classification (as-
signing labels to words). As a wrapper approach, our method
could be applied on any baseline sequence tagger. We choose
two state-of-the-art systems to test our approach: (1) a deep
neural network (NN) framework for unified NLP processing
[14]; (2) a conditional random field model (CRF) which has
been proved successful in many NLP tagging tasks.

A. Sequence Labeling with Deep Neural Network (NN)

The authors in [14] proposed a deep neural network (NN)
framework for semantic role labeling in English. In this
paper we adapt this framework on named entity recognition
and part-of-speech tagging problems.

Traditional NLP approaches usually extract a rich set
of hand-crafted features from the sentence. In contrast,
this deep neural network framework provides a unified
framework to handle NLP tasks and processes an input
sentence by several layers of feature extraction. The features
in all the layers of the network are automatically trained
by backpropagation to be relevant for the target task. The
first layer is a lookup-table layer which map raw words
into real-valued vectors (which are learnt) for processing
by subsequent layers towards the targets. The second layer

extracts features from the sentence treating it as a sequence
with local and global structure (a sliding window approach).
The remaining layers are classical NN layers. We employ
one hidden layer for both NER and POS tasks.

Leveraging Unlabeled Data with an Auxillary Task:
Language Model Training Semi-supervision was used in
this deep NN framework through a so-called “language
modeling” strategy. Relying on the abundant unlabeled text
data freely available on the web, the authors [14] proposed
the unsupervised LM task to model natural human language
sequences (English in their case) (also deep NN based). The
motivation is: for most NLP tagging tasks, words seman-
tically similar can be usually exchanged with no impact
on the labels. The proposed LM tried to force two natural
sentences s' and s2 with same semantic tags to have a close
representation in the feature extraction layers. The features
(embedding) learned by the lookup-table layer from this LM-
NN essentially clusters semantically similar words. Then
weights of this LM lookup-table are used to initialize the
entries in word lookup-table for the target sequence labeling
task, e.g. NER (which ends up similar to multi-tasking with
the LM). Our experimental results show that this auxillary
task is very useful for NLP sequence labeling and our SLF
could improve over this semi-supervision as well. We trained
two language models (one for German and the other for
English, both with the Wikipedia corpus).

Viterbi Training: For sequence tagging such as NER or
chunking, each entity normally involves more than one word.
The unified deep NN framework described above utilizes a
labeling-per-word strategy without exploring dependencies
among targeted classes. For example, for each NER tag
type, the popular IOBES tagging style could make totally 17
classes for sequence classification, with clear dependencies
between certain tag types. In this paper, we handle the
local dependency through a Viterbi-style structured pre-
diction technique (dynamic programming), which increases
the performance of this NN framework effectively. Our
SLF models used without Viterbi have a somewhat similar
function to the Viterbi, since the predicted class-distribution
of the surrounding neighbor words should obey the local
depencies as well, and can be used during predictions. In
the section V, we compared the performance of adding SLF
features when using Viterbi analysis or not, to measure how
much these two techniques overlap.

SLF in Deep NN Framework: It is straighforward to
apply the SLF learning in the above deep NN framework.
Unlike normal word features (essentially, letter patterns),
SLF vectors (except clustered SLF) could be used directly,
since they are numerical values already. For all words (or
discrete attributes) in the sliding text window centered at the
word of interest, SLF distributions are concatenated, added
to other attributes’ lookup-table outputs, and then fed into
the second NN layer for sequential labeling.

B. Conditional Random Field

Conditional random fields (CRFs) [15] achieve state-of-
the-art performance across a broad spectrum of sequence
labeling tasks, including the gene mention task in the
BioCreativell competition [13]. Linear-chain CRFs are dis-
criminative probabilistic models over observation sequences
x and label sequences y = (y1, ..., y|y|), Where |x| = |y],
and each label y; has K different possible discrete values
(multi-class). The conditional probability is defined as,

po(ylx) = Z(lx) exp(z 0;F;(x,y)) ©)

where Fy(sx,y) = S f5(%, yi. e)
and Z(x) = >y exp(}_; 0, Fj(x, y)).

The model is trained by maximizing the log-likelihood of
the training data by gradient methods, which is a convex
optimization problem [15]. A dynamic algorithm (the for-
ward/backward strategy) is used to compute all the required
probabilities pg(y;, yi+1) for calculating the gradient of the
likelihood.

We used the CRF++ toolkit [18]. Since CRF++ accept
discrete features, clustered SLF is tested as a wrapper for
CREF in this case.

IV. RELATED WORK
A. Supervised Sequence Labeling for Natural Languages

NLP research aims to convert human language into repre-
sentations that are easy for computers to manipulate. Several
sub-tasks are identified as useful for end applications such as
information extraction or machine translation. Typical prob-
lems range from the syntactic, like part-of-speech tagging,
chunking and parsing, to the semantic, such as semantic-role
labeling and named entity extraction. Most of these sub-tasks
are sequence segmenatation or sequence labeling problems.
While early studies were mostly based on handcrafted rules,
recent tagging systems use supervised machine learning
techniques to automatically train labeling algorithms from
a collection of training examples. Popular supervised tech-
niques includes Hidden Markov Models (HMM), Maximum
Entropy (ME) Models, Support Vector Machines (SVM),
and Conditional Random Fields (CRF) (for NER review,
see [19]).

B. Semi-supervised Learning

As already mentioned, self-training [2] (also called ’boot-
strapping’ in the traditional NLP field) and co-training [5]
augment the training set with labeled examples from the
unlabeled set which are predicted by the model itself. This
can give improvements to a model, but care must be taken
as the predictions are prone to noise. Many other semi-
supervised learning algorithms exist, including Tranductive
SVMs [20], [21], graph-based regularization [22], entropy
regularization [23] and EM with generative mixture models
[24], see [25] for a review.

Traditionally, generative models (with EM used on the
unlabeled set) were dominant for structural learning tasks in
NLP. Recently discriminative models ([26], [27]) have been
shown to offer competitive performance over a variety of
sequential and structured learning problems in NLP. Gener-
ative models generally do not achieve the same accuracy as
discriminatively trained models, and therefore it is preferable
to focus on discriminative approaches [1] in this paper. A
number of semi-supervised learning systems can bootstrap
from small sets of labeled data using discriminative learners,
including self-training, co-training, and transductive SVM
[20]. None of them seems to outperform the others across
different domains, and each has its prons and cons.

Self-training can be used in combination with any dis-
criminative learning model, but the predictions are prone to
noise.

Co-training [5] is a weakly supervised learning technique
in which the redundancy of the task is captured by training
two classifiers using separate views of the same data. Pierce
et al. [28] examined the scalability behavior of co-training
on NLP tasks, and found that co-training is effective for
learning from small amounts of labeled data but care must
be taken due to possible degradation in the quality of
bootstrapped data.

Transductive SVMs [20], [21] might learn better max-
margin hyperplanes with the use of unlabeled data, but their
optimization procedure is non-trivial [21]. The authors of
[21] proposed a practical procedure to adapt transductive
SVM to large scale nonlinear cases. The largest scale tested
in that paper includes just 1000 labeled examples and 60,000
unlabeled examples, which takes about 40 hours for training.
Hence, apparently the scalability of this approach is limited,
and impractical for the real natural language processing
tasks.

Graph-based semi-supervised approaches make use of
dependencies introduced between the labels of nearby ex-
amples on a constructed graph [22], [29]. These models
train to encourage nearby data points to have the same
class labels. They can obtain impressive performance using
a very small amount of labeled data. However, since they
model pairwise similarities among instances, most of these
techniques require joint inference over the whole data set of
size L+ U at test time (O((L+U)?)), which is not practical
for a real NLP corpus.

Entropy regularization framework [1] has recently been
proposed on linear-chain Conditional Random Fields (which
are popular in NLP community). In its formulation, the
traditional label likelihood (on supervised data) is augmented
with an additional term that encourages the model to predict
low entropy label distributions on the unlabeled set. However
this technique was pointed out to be quite fragile and the
solution might assign all tokens the same label [30].

Most of the above semi-supervised methods adapt well
to thousand of training examples (including both labeled

Table IIT
NUMBER OF TOKENS USED IN FOUR NLP TASKS

We tested four tasks: two CoNLL-2003 [11]) NER tasks, one POS task
[12] and one GM task [13]. Unlabeled corpus includes subset of
wikipedia English, ECI German corpus and pubmed abstracts.

Tokens Size Training (Labeled) Testing | Unlabeled
German NER 206,931 51943 ~60M
English NER 203,621 46,435 ~200M
English POS 1,029,858 126,528 ~300M
Bio GM 345,996 116,944 ~900M

and unlabeled data) only [31]. Except self-training and co-
training, other semi-supervised algorithms have scalability
problems for realistic language modeling tasks, which nor-
mally involves hundreds of thousands labeled examples.
Table III lists the size of both labeled and unlabeled corpora
for the four NLP tasks we tested in this work. For instance,
the two CoNLL-2003 [11] NER tasks have two hundred
thousand training tokens and giga-word scale unlabeled
corpora (Wikipedia). In this respect, our proposed SLF
method is superior to many methods since it can make use of
the extremely large amount of unlabeled data in the presence
of a fairly large labeled set.

Finally, there are some methods that use auxiliary tasks
on large unlabeled corpora for training sequence models
(i.e. through multi-task learning). Ando and Zhang (2005)
[32] proposed a method based on defining multiple tasks
using unlabeled data that are multi-tasked with the task of
interest, which they showed to perform very well on POS
and NER tasks. The methods using auxiliary information can
often find good solutions, however the selection of auxiliary
problem requires significant insights. Similarly, the language
model strategy proposed in Collobert et al. [14] is another
type of auxillary task as above.

C. Semi-supervised Learning with Labeled Features

Beyond the significant amount of work on semi-
supervised learning with small amounts of fully labeled data,
there has been a growing interest in the use of background
domain knowledge to augument supervised learning.

This includes a number of methods that make use of
human-provided associations of features to particular classes
(for example, a human annotator might label the word
“cashback” to the document category “shopping”). The prior
class-bias of features (called ’labeled features’ in the follow-
ing) could be used to generate pseudo labeled examples that
are then used for augumenting standard supervised learning
[33], [34], [35]. This trend of work is orthogonal to the
traditional semi-supervised category.

Schapire et al [33] utilized a set of features annotated with
their associated majority labels to label pseudo-examples
for boosting a logistic regression model. Similarly, Wu
and Srihari [34] assigned labels to unlabeled documents
with ’labeled features’ and then use these pseudo-examples
in conjunction with labeled examples to train a weighted
margin Support Vector Machine with regularization. Later

Haghighi and Klein [36] explored similar “labeled features”
for a “pseudo-example” strategy of training a generative
MREF sequence model.

Unlike the above approaches, Druck et al. [35] utilized a
generalization expectation (GE) criterion with soft constraint
of the model’s predictions on unlabeled instances using
“labeled features”. Similarly, Mann et al. [30] introduced
GE to linear-chain CRFs for targeting sequence modeling
problems which makes use of “labeled features” rather than
“labeled instances”.

In contrast to all above methods, our semi-supervised
method induces features, instead of examples, from a large
corpus of unannotated sentences in a supervised fashion.
Our SLF method is orthogonal to traditional semi-supervised
techniques and also orthonal to those approaches relying on
“labeled features” (we do not use human annotations). As
a wrapper approach, it can be combined with many of the
other supervised and semi-supervised methods.

V. EXPERIMENTS
A. Datasets & Settings

We first test our approach on the English and German
NER datasets provided in the CoNLL-2003 shared task
[11]. For each language, four files are provided, including
a training file, a development file (for parameter tuning),
a test file and a large file with unannotated data. For both
languages, more than 200,000 training tokens exist in the
provided training files (size of training/testing/unlabeled sets
in Table III). The ECI data file provided in CoNLL-2003
[11] is used as our unlabeled corpus for semi-supervised
learning of German NER. The English Wikipedia web pages
is used for the English NER case. We then test basic SLF
on the English POS data set described in [12].

For these three tasks, we used the unified deep Neural
Network (NN) framework [14] as a base classifier for SLF.
The first lookup-table layer maps words to 50-dimensional
vectors (one vector for each word in the dictionary), the
parameters of which are automatically trained during the
learning process using backpropagation. The second layer is
a classical layer of H hidden units (where H is optimized on
the development set), and the final layer outputs probabilities
of the class labels. The basic sequence labeling was handeled
using a sliding window approach. We then extend this
baseline with a Viterbi decoding of the entire sentence to
incorporate local dependencies between target classes.

For the baseline deep NN model we tried various combi-
nations of the following word features:

o For English NER, we use (i) words in a 7-word-window

surrounding the current word, (ii) capitalization flags
of the current and surrounding words (Caps); and (iii)
gazetteer information, as provided by ConLL-2003;

e For German NER, we use (i) words in a 5-word-

window surrounding the current word, (ii) capitaliza-
tion flags of the current and surrounding words, (iii)

Table IV
F1 SCORE ON THE TEST SET FOR GERMAN NER

For each choice of baseline (left column) applying SLF improves over it
(right column). LM means using language model semi-supervision.

Method Baseline | +(Basic SLF)
Words only 45.89 51.10
Words only + Viterbi 50.61 53.46
All Features + LM 72.44 73.32
All Features + LM + Viterbi 74.33 75.72

[Word only + Viterbi + best SLF | 50.61] 64.41 |

prefix and suffix (length up to 4) of the current and
surrounding words, (iv) the POS tags of the current
and surrounding words; and (v) the chunk tag of the
current and surrounding words. (Note in this case no
gazetteer lists are used).

o For English POS, we use (i) words in a 5-word-window
surrounding the current word, (ii) capitalization flags
of the current and surrounding words, (iii) stem-ends
of the current and surrounding words.

We then test SLF using conditional random fields (us-
ing CRF++ tool) as a base classifier on the gene-name-
recognition (GM) data set (the number of tokens in train-
ing/testing/unlabeled sets in Table III) from the 2006
BioCreativell BioNLP competition [13]. For this GM task,
we utilized the following word features: (i) words in a 5-
word-window surrounding current, (ii) capitalization fea-
tures of current and surrounding words, (iii) prefix and suffix
(up to length 4) of current and surrounding words, (iv) string
patterns of current and surrounding words. (Note we did not
use any gazetteer lists).

In the following, we compare basic and extended SLF
models over various baselines, including supervision alone,
using Viterbi decoding or semi-supervision via LM .

B. Basic SLF: Comparison with Supervised Deep NN &
Semi-Supervision via LM

Table IV lists the test set performance of the German NER
task using the F1 measure when applying basic SLF as a
wrapper to various systems: using only word features (with
and without a Viterbi decoding step), and using all features
plus the language model (LM) based semi-supervised learn-
ing. In all cases SLF improves over the baseline. Our best
performance of 75.72 (using all features + SLF) beats the
state-of-the-art German NER performance of 75.27 which
was reported in [32]. The best result during the competition
was 74.17 [37].

We also considered taking our best model, and adding the
SLF features predicted by it to a basic word-features only
model (the last row of Table IV). This improved its accuracy
from 50.61 to 64.1. Using the LM as well yields 72.45
(words+LLM on their own are 69.05). This is interesting
because these results do not require POS, chunk, stem or
caps features any more, but are close to the state-of-the-art.
As we mentioned in the section II-F, this shows that NER
predictions relying on only basic word plus the well-trained

Table V
F1 SCORE ON THE TEST SET FOR ENGLISH NER

SLF improves over each baseline.

Method Baseline | +(Basic SLF)
Words + Caps 77.82 79.38
Words + Caps + Viterbi 80.53 81.51
All Features + LM 86.49 86.88
All Features + LM + Viterbi 88.40 88.69

SLF patterns, (from better models which include harder to
compute features), could achieve much better performance
and this setting could be a feasible choice for online NER
systems.

In addition, we also tried a transductive setting with basic
SLF where we use the test set as the unlabeled corpus
to build class-distribution feature vectors. The results for
German NER either only help marginally, or not at all.
For instance, when using “All Features+LM”, this setup
achieves F1 72.04 which is even slightly lower than the
supervised NN baseline (F1 72.44 in Table IV). Moreover,
we tried counting words’ class in the train or validation
sets. The resulting word-class distribution vectors could be
used instead of SLF. Adding them to German NER achieves
similar performance as the transductive SLF (results not
shown). These results show that the semi-supervision from
using the large unlabeled set in SLF is important.

Table V provides results for the English NER task.
Again, SLF improves over all baselines; our best result was
88.69. In contrast, the best performing method during the
competition was 88.76, and [32] have since reported 89.31
using multi-task semi-supervision. Here, our slightly worse
performance seems to be due to our weaker baseline method
(before even applying SLF) compared to these approaches.

C. Attribute SLF: Comparison with Supervised Deep NN &
Semi-Supervision via LM

Table VI compared the performance of English POS with
SLF applied to the deep NN, or not. Similar conclusions as
with the two NER tasks were observed. The comparisons
are under various settings (with different combinations of
features added, and language model improvements). The
best state-of-art [12] English POS system (as far as we
know) achieved the token level error rate 2.76%. We could
see that with only words, cap feature and stem-end feature,
our SLF improves the deep-NN system to the state-of-
the-art POS performance. The key word “attribute” in the
last column means that we added not only the basic SLF
feature for word but also added the attribute SLF features
for ’caps’ and ’stem-end’ attributes. Attribute SLF makes
improvements on basic SLF over both supervised baseline
alone and semi-supervision LM.

D. Clustered & Boundary SLF: Comparison with CRF

The BioCreativell GM [13] data set involves a sequence
tagging task which looks for gene/protein names in a bio-
literature text corpus. Since almost all the top teams in

Table VI
TOKEN LEVEL ERROR RATE OF ENGLISH POS

Attribute SLF improves over supervised baseline and semi-supervised LM.
Our best POS performance achieves the state-of-the-art. (Attr: Attribute).

Method Baseline | +(Basic SLF) | +(Attr SLF)

Words only 4.99 4.06 -

Words only + LM 3.93 3.89 -

All Features 3.28 2.99 2.86

All Features + LM 2.79 2.75 2.73
Table VII

F1 SCORE ON THE TEST SET FOR BIOCREATIVEIl GM

Clustered SLF and Boundary SLF added on CRF. Both improves over the
supervised CRF when using only words or all word attributes.

Method Baseline (CRF) +Clustered SLF
Words+Caps 82.02 84.01 (basic)

Words+Caps 82.02 85.24 (boundary)
All Features 86.34 87.16 (boundary)

BioCreativell GM competition [13] utilized CRF, we tried
to use CRF on this sequence tagging problem as well. We
used CRF++ as our baseline and apply clustered SLF as
a wrapper semi-supervised approach. Considering there are
only two classes in this tagging task (gene name or not), we
tested boundary SLF on this corpus as well.

Table VII uses F1 test score to compare GM performances
under multiple setups. We could see that both clustered basic
SLF and clustered boundary SLF improve over CRF super-
vised baselines. Boundary SLF shows better improvements
compared to basic SLF.

The best performance achieved here (F1 87.16 in the
last row of Table VII) is slightly lower than the best team
(87.21 F1 test) in the BioCreativell GM competition. Here
we used only basic word, “caps” features, string patterns
and prefix/suffix attributes. All top teams in the competition
used many other word attributes, such as POS, and they all
utilized other complex techniques such as the bidirectional
training of models and extensive domain lexicons. In sum-
mary, SLF could improve CRF on this GM corpus effectively
and we could achieve state-of-the-art performance using
only basic word features.

E. Comparison with Self-training

We applied self-training to the same baseline methods to
compare to the performance of SLF. There are numerous
variants of self-training. We adopt the following weighting
scheme: given L training examples, we choose L/R (R is a
parameter to choose) unlabeled examples to add in the next
round’s training. By varying R, we get a range of impacts
from self-training.

Table VIII and Table IX give results of self-training for the
English and German NER tasks. Table X provides the results
for English POS. For all three corpus, self-training only
helped marginally, or not at all, depending on the parameters.

The above comparison indicates that SLF has better
behavior than self-training with a random selection strategy.
Since there exist many selection strategies for self-training,
other selection techniques might bring improvements, see

Table VIIT
TEST F1 OF GERMAN NER USING SELF-TRAINING.

Method Baseline | R=1 R=10 | R=100
Words only | 50.61 47.07 | 47.92 | 479
All+LM 74.33 73.42 | 74.41 | 73.9
Table IX
TEST F1 OF ENGLISH NER USING SELF-TRAINING.
Method Baseline | R=1 R=20 | R=100
Words only | 80.53 79.51 | 81.01 | 80.85
All+LM 88.40 87.64 | 88.07 | 88.17
Table X
ENGLISH POS USING SELF-TRAINING.
Method Baseline | R=1 | R=20 | R=100
Words only | 4.99 5.08 | 5.10 5.12
All+LM 2.79 2.79 | 2.80 2.81

e.g. [9], [7] for other strategies. Still, these heuristic choices
are difficult and need careful tuning [7]. In contrast, the
proposed SLF method does not seem to suffer from these
issues.

Further, the performance in multiple rounds of self-
training might oscillate because of degradation by noisy
labels (see e.g. [7], [8]). We observed that basic SLF’s
iterative training gives stable results. Figure 2 shows the test
F1 from the iterations (as a wrapper for the “All features +
LM + Viterbi” baseline) for the German NER set. It appears
to converge in only a few iterations.

VI. CONCLUSIONS

In this work we proposed a novel semi-supervised algo-
rithm for learning features from a large unlabeled corpus
in a supervised fashion. These features try to model class-
distribution patterns for words or word attributes. We applied
this method and several extensions to four classical labeling
tasks, where we obtained improvements over the supervised
and semi-supervised baselines tested. Our method is highly
scalable, contains no difficult parameters to tune, and we
found it to be empirically robust.

The proposed method can easily be extended to other
cases or domains. For example, instead of calculating pre-
dicted class distributions for each word, we could consider
n-gram distributions instead. Moreover, one can generalize
beyond word-level evaluation tasks. For instance in text cat-
egorization problems (document classification or sentiment
analysis) a word’s class distribution is the distribution of
labels of documents that contained that word.

REFERENCES

[1] F Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuurmans,
“Semi-supervised conditional random fields for improved se-
quence segmentation and labeling,” in Proceedings of the 21st
International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational
Linguistics., 2006, pp. 209-216.

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

76
_ O ---9e--=-0
/0 -7
g ?
(e} 1
a7st !
o 2
/
1
/
1
1
¢
3 0 1 2 3 4 5 6
Iteration
Figure 2. Test F1 over basic SLF rounds on German NER.

H. Scudder, “Probability of error of some adaptive pattern-
recognition machines,” IEEE Transactions on Information
Theory, vol. 11, no. 3, pp. 363-371, 1965.

R. J. Kate and R. J. Mooney, “Semi-supervised learning
for semantic parsing using support vector machines,” in
Proceedings of the Human Language Technology Conference
of the North American Chapter of the Association for Compu-
tational Linguistics, Short Papers (NAACL/HLT-2007), 2007,
pp. 81-84.

Z. Kozareva, B. Bonev, and A. Montoyo, “Self-training and
co-training applied to spanish named entity recognition,” in
MICAI 2005: Advances in Artificial Intelligence, 2005.

A. Blum and T. Mitchell, “Combining labeled and unlabeled
data with co-training,” in COLT’ 98:. New York, NY, USA:
ACM, 1998, pp. 92-100.

M. Collins and Y. Singer, “Unsupervised models for named
entity classification,” in Proceedings of the Joint SIGDAT
Conference on EMNLP, 1999, pp. 100-110.

H. Shan and D. Gildea, “Self-training and co-training for se-
mantic role labeling: Primary report,” University of Rochester,
Comp. Sci. Dept., Tech. Rep. TR891, 2006.

T. Zhang, F. Damerau, and D. Johnson, “Text chunking using
regularized winnow,” in ACL '01: Proceedings of the 39th An-
nual Meeting on Association for Computational Linguistics,
Morristown, NJ, USA, 2001, pp. 539-546.

H. Daumé III, “Cross-task knowledge-constrained self train-
ing,” in Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, Honolulu, Hawaii,
October 2008, pp. 680-688.

Y. Qi, R. Collobert, P. Kuksa, K. Kavukcuoglu, and J. Weston,
“Combining labeled and unlabeled data for word-class distri-
bution learning,” in CIKM’09: Proceedings of the eighth ACM
Conference on Information and Knowledge Management.
ACM, 2009.

Erik and F. De Meulder, “Introduction to the conll-2003
shared task: language-independent named entity recognition,”
in Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003, 2003, pp. 142-147.

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer,
“Feature-rich part-of-speech tagging with a cyclic dependency
network,” in NAACL ’03: Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology,
Morristown, NJ, USA, 2003, pp. 173-180.

L. Smith, L. Tanabe, R. Ando, et al., and J. W. Wilbur,
“Overview of biocreative ii gene mention recognition,”
Genome Biology, vol. 9, no. Suppl 2, 2008.

R. Collobert and J. Weston, “A unified architecture for nlp:
deep neural networks with multitask learning,” in ICML ’08:

Proceedings of the 25th international conference on Machine
learning, 2008, pp. 160-167.

J. Lafferty, A. McCallum, and F. Pereira, “Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data,” in ICML’01:, 2001.

C. D. Manning and H. Schtze, Foundations of Statistical
Natural Language Processing. MIT press, 1999.

A. Gersho and R. M. Gray, Vector quantization and signal
compression. Norwell, MA, USA: Kluwer Academic Pub-
lishers, 1991.

“Crf++: Yet another crf toolkit.” Available:
http://crfpp.sourceforge.net/

[Online].

D. Nadeau and S. Sekine, “A survey of named entity recogni-
tion and classfication,” Linguisticae Investigationes, vol. 30,
no. 1, pp. 3-26, 2007.

T. Joachims, “Transductive inference for text classification
using support vector machines,” in ICML ’99: Proceedings of
the Sixteenth International Conference on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999, pp. 200-209.

R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Large scale
transductive svms,” vol. 7. Cambridge, MA, USA: MIT
Press, 2006, pp. 1687-1712.

X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised
learning using gaussian fields and harmonic functions,” in
ICML’03: Proceedings of the 20th International Conference
on Machine Learning, 2003, pp. 912-919.

Y. Grandvalet and Y. Bengio, “Semi-supervised learning by
entropy minimization,” in Advances in Neural Information
Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou,
Eds. Cambridge, MA: MIT Press, 2005, pp. 529-536.

K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell,
“Text classification from labeled and unlabeled documents
using em,” vol. 39, no. 2-3. Hingham, MA, USA: Kluwer
Academic Publishers, 2000, pp. 103-134.

O. Chapelle, B. Scholkopf, and A. Zien, Eds., Semi-
Supervised Learning (Adaptive Computation and Machine
Learning). MIT Press, 2006.

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

H. Daumé III, “Semi-supervised or semi-unsupervised?”
in Proceedings of the NAACL HLT Workshop on Semi-
supervised Learning for Natural Language Processing, vol.
Invited Position Paper,, no. 84-85, Boulder, Colorado, USA,
June 2009, pp. 19-27.

S. Dasgupta and V. Ng, “Discriminative models for semi-
supervised natural language learning”, invited position paper,”
in Proceedings of the NAACL HLT Workshop on Semi-
supervised Learning for Natural Language Processing, Boul-
der, Colorado, USA, June 2009, pp. 84-85.

D. Pierce and C. Cardie, “Limitations of co-training for natu-
ral language learning from large datasets,” in In Proceedings
of the 2001 Conference on Empirical Methods in Natural
Language Processing, 2001, pp. 1-9.

A. Blum, “Semi-supervised learning using randomized min-
cuts,” in ICML ’04: Proceedings of the twenty-first interna-
tional conference on Machine learning, 2004.

G. Mann and A. McCallum, “Generalized expectation criteria
for semi-supervised learning of conditional random fields,” in
ACL-08: Association for Computational Linguistics., 2008,
pp. 870-878.

A. Goldberg and X. Zhu, “Keepin’ it real: Semi-supervised
learning with realistic tuning,” in Proceedings of the NAACL
HLT Workshop on Semi-supervised Learning for Natural
Language Processing, Boulder, Colorado, USA, June 2009,
pp. 19-27.

R. K. Ando and T. Zhang, “A framework for learning pre-
dictive structures from multiple tasks and unlabeled data,”
Journal of Machine Learning Research, vol. 6, pp. 1817-
1853, 2005.

R. E. Schapire, M. Rochery, M. G. Rahim, and N. Gupta,
“Incorporating prior knowledge into boosting,” in ICML ’02:
Proceedings of the Nineteenth International Conference on
Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2002, pp. 538-545.

X. Wu and R. Srihari, “Incorporating prior knowledge with
weighted margin support vector machines,” in KDD ’04: Pro-
ceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining. New York, NY,
USA: ACM, 2004, pp. 326-333.

G. Druck, G. Mann, and A. McCallum, “Learning from
labeled features using generalized expectation criteria,” in
SIGIR ’08: Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in
information retrieval, 2008, pp. 595-602.

A. Haghighi and D. Klein, “Prototype-driven learning for
sequence models,” in Proceedings of the main conference on
Human Language Technology Conference of the North Amer-
ican Chapter of the Association of Computational Linguistics,
Morristown, NJ, USA, 2006, pp. 320-327.

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang, “Named
entity recognition through classifier combination,” in Pro-
ceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003, 2003, pp. 168-171.

