
Large Scale Manifold Transduction

Michael Karlen∗† michael.karlen@gmail.com
Jason Weston∗ jasonw@nec-labs.com
Ayse Erkan∗‡ naz@cs.nyu.edu
Ronan Collobert∗ collober@nec-labs.com

(∗) NEC Labs America, 4 Independence Way, Princeton, NJ 08540 USA
(†) Ećole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
(‡) New York University, Computer Science Department, 715 Broadway New York, NY 10003 USA

Abstract

We show how the regularizer of Transduc-
tive Support Vector Machines (TSVM) can
be trained by stochastic gradient descent for
linear models and multi-layer architectures.
The resulting methods can be trained on-
line, have vastly superior training and test-
ing speed to existing TSVM algorithms, can
encode prior knowledge in the network archi-
tecture, and obtain competitive error rates.
We then go on to propose a natural gen-
eralization of the TSVM loss function that
takes into account neighborhood and mani-
fold information directly, unifying the two-
stage Low Density Separation method into a
single criterion, and leading to state-of-the-
art results.

1. Introduction

Several methods for improving discriminative classi-
fiers using unlabeled data have been developed in the
last few years. Perhaps the two most popular ways of
utilizing the unlabeled data are:

(i) maximizing the margin on the unlabeled data
as in Transductive Support Vector Machines
(TSVM) so that the decision rule lies in a region
of low density; and

(ii) learning the cluster or manifold structure from
the unlabeled data as in cluster kernels (Chapelle
et al., 2003), label propagation (Zhu & Ghahra-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

mani, 2002), and Laplacian SVMs (Belkin et al.,
2006).

Both approaches can be seen as making the same
structure assumption on the data, that the cluster or
manifold structure in the data is correlated with the
class labels of interest.

The Low Density Separation algorithm (LDS)
(Chapelle & Zien, 2005) is a two-stage algorithm that
combines both of these approaches, with improved re-
sults over using only one of the techniques, however
the combination method is somewhat ad-hoc.

A serious problem with all these methods is that they
suffer from an inability to scale to very large datasets,
apart from in the linear case (Sindhwani & Keerthi,
2006). This is ironic because the potential gain of
semi-supervised learning lies in the vast amounts of
readily available unlabeled data. This performance
gain is never attained simply because of the compu-
tational burden of calculating the result. In the con-
clusion of the article describing the LDS algorithm the
authors state:

“We observe that the time (and to some degree, also
space) complexities of all methods investigated here
prohibit the application to really large sets of unla-
beled data, say, more than a few thousand. Thus, work
should also be devoted to improvements of the com-
putational efficiency of algorithms, ideally of LDS.”

In this work we propose a new method for semi-
supervised learning which features the following im-
provements over existing approaches:

• A new regularizer for semi-supervised learning is
proposed, that is a unification of the approaches
in both margin-based and manifold-based regular-
ization. As such it represents a clean version of

Large Scale Manifold Transduction

the LDS method in a single objective, rather than
an ad-hoc two-stage approach. Experimental re-
sults show its good performance.

• We train our system using stochastic gradient de-
scent and choose linear or multi-layer architec-
tures rather than kernel methods. This results
in far faster training and testing times than ex-
isting methods, and also allows semi-supervised
learning to be performed online. Our method can
easily scale to millions of examples.

• We show it is also possible to encode domain
knowledge into our multi-layer architecture ap-
proach, resulting in excellent generalization per-
formance. This is demonstrated by training semi-
supervised convolutional networks for image data.

The rest of the article is as follows. Section 2 describes
in detail existing margin and manifold based regular-
ization approaches, and scalability of the resulting al-
gorithms. Section 3 describes our proposed approach,
Section 4 compares it experimentally to existing meth-
ods, and Section 5 concludes.

2. Existing Approaches

As stated in the introduction, two of the most pop-
ular loss functions (regularizers) for using unlabeled
data are margin-based regularization as in TSVMs and
manifold-based regularization. We will discuss each of
these in turn.

2.1. TSVMs

The Transductive Support Vector Machine (TSVM)
is an algorithm originally proposed by Vapnik (1998)
to take advantage of both a labeled training set and
an unlabeled test set during prediction time. It was
named that way because Vapnik proved bounds on
generalization performance given the availability of the
test set that were superior to induction based on using
the labeled training set alone. The idea of the algo-
rithm was:

(i) Choose a nested set of functions F1 ⊂ F2 ⊂ . . .
of increasing capacity.

(ii) For each possible labeling of the test examples,
find the smallest subset Fk that can classify both
training and testing data correctly.

(iii) Choose the labeling which required the smallest
index k.

In terms of actual implementation it is known that the
notion of margin – the distance of examples from the
classifier’s decision rule – is connected to the concept
of capacity (Vapnik, 1998), so a simple algorithm is
the following: choose the decision rule that maximizes
the margin on both labeled and unlabeled examples.

The Support Vector Machine (Vapnik, 1998) for two-
class classification already implements a margin based
capacity control on labeled examples, using an opti-
mization problem of the following form:

min
w,b

γ||w||2 +
L∑

i=1

`(f(xi), yi) (1)

where the family of functions are

f(x) = w · x + b (2)

and {(xi, yi), . . . , (xL, yL)} ⊂ Rd × {±1} are the la-
beled training examples, and the loss function `(·, ·) is
the so-called hinge loss:

`(f(x), y) = max(0, 1− yf(x)). (3)

To implement Transductive SVMs it is (almost) suffi-
cient to take the SVM optimization problem (1) and
add an extra term for the unlabeled examples:

min
w,b

γ||w||2 +
L∑

i=1

`(f(xi), yi) + λ

U∑
i=1

`∗(f(x∗i)) (4)

where the U unlabeled examples use the so-called sym-
metric hinge loss function

`∗(f(x∗)) = max(0, 1− |f(x∗)|) (5)

which, intuitively speaking, pushes the unlabeled ex-
amples far from the margin: the absolute value is
necessary in equation (5) because one does not know
which side of the hyperplane those examples should
lie on, unlike the labeled examples, so effectively the
classifier trains on its own predictions. This notion of
self-learning (Chapelle et al., 2006) can cause disas-
trous consequences in some cases: especially when the
dimensionality d � L one might be able to classify all
unlabeled examples as belonging to one class whilst
still classifying the labeled data correctly, giving a low
value of the objective function, but nonsense results.
This is solved by introducing a so-called balancing con-
straint which attempts to keep some of the unlabeled
examples in each class.

Many researchers seem to be believe that the TSVM
objective function is a good choice for semi-supervised

Large Scale Manifold Transduction

learning. However, finding a solution to the non-
convex problem is far from easy, and thus several im-
plementations have been attempted thus far. We will
now describe some of those specific implementations,
and their key differences.

S3VM The authors of (Bennet & Demiriz, 1998)
proposed to use mixed integer programming to find
the labeling with the lowest objective function. The
optimization appears intractable for large datasets, as
“the solver failed due to excessive branching” in those
cases. Only the linear case was considered, and no
balancing constraint was used.

SVMLight-TSVM In (Joachims, 1999) a heuristic
algorithm was proposed that at first fixes the labels of
the unlabeled examples and then iteratively switches
those labels to improve the TSVM objective function,
solving a convex SVM objective function at each step.
The nonlinear case is implemented by solving in the
dual, resulting in a kernel model of the form:

f(x) =
L∑

i=1

αiyiK(xi, x) +
U∑

i=1

α∗
i K(x∗i , x) + b (6)

A balancing constraint enforces that the fraction of
positive and negatives assigned to the unlabeled data
should be the same fraction as found in the labeled
data. According to the proof of convergence, the al-
gorithm at worst case could look at all 2U labelings,
but this is rather unlikely. The algorithm can deal
with a few thousand examples in the nonlinear case in
practice, but is faster in the linear case.

VS3VM In (Fung & Mangasarian, 2001) a concave-
convex minimization approach was proposed that
solves successive convex problems, usually requiring
only 5-7 linear programs, where they chose the L1

norm of w as a regularizer instead of the L2 norm.
They studied the linear case, with no balancing con-
straint. This method will scale like the linear solver
used in each iteration.

∇TSVM More recently, the authors of (Chapelle &
Zien, 2005) proposed to optimize TSVM by gradient
descent in the primal. For the nonlinear case, Ker-
nel PCA has to be performed so that optimization in
the primal is possible. This algorithm is faster than
SVMLight-TSVM at least for small datasets (Col-
lobert et al., 2006), but still has cubic complexity
O((U + L)3). This method also requires one to store
the entire kernel matrix of (U +L)2 elements in mem-
ory, which clearly becomes infeasible for large datasets.

The authors introduced a balancing constraint that is
amenable to gradient descent:

1
U

U∑
i=1

f(x∗i) =
1
L

L∑
i=1

yi . (7)

CCCP-TSVM The authors of (Collobert et al.,
2006) proposed to apply the Concave-Convex proce-
dure for non-convex problems to TSVMs, which can
be seen as a nonlinear extension of VS3VMs. It uses
the same balancing constraint as ∇TSVM. This im-
plementation is over 100 times faster than SVMLight-
TSVM and 50 times faster than ∇TSVM (for L+U =
2000), and appears to scale better as well. It has em-
pirically quadratic complexity because it relies on the
sparsity of the SVM solution for improved speed and
memory requirements. However, it still takes around
40 hours on a modern machine to solve a problem with
60,000 unlabeled examples in the nonlinear case.

Large Scale Linear TSVMs The authors of (Sind-
hwani & Keerthi, 2006) recently proposed a large scale
TSVM method for the linear case. They focused on
text problems with large sparse feature vectors and
train the model (2) directly in the primal. In particu-
lar, they use a label switching heuristic like SVMLight-
TSVM, but switch multiple labels at once.

In the nonlinear case things are not so easy. One is
restricted in the quest to reduce training time by the
prediction speed of the model (6) . Moreover, compu-
tation grows as the training data grows (Steinwart &
Scovel, 2005). Even if one tries tricks to keep a fixed
number of basis functions these methods are still slow
compared to multi-layer models (Burges, 1996).

2.2. Manifold-based regularization

A separate direction of research in semi-supervised
learning is manifold-learning based regularization.
The main idea in these approaches is to find a rep-
resentation of the data which collapses points lying in
the same manifold so that a classification algorithm
can easily predict that they share the same class label.

These methods can be split into two categories: those
which treat this as a two-stage problem: (i) learn an
embedding and (ii) train a classifier in this new space,
and those which try to do everything in a single step.

To train a two-stage classifier, in the first stage
one employs any manifold-learning algorithm such as
Isomap (Tenenbaum et al., 2000), Laplacian Eigen-
maps (Belkin & Niyogi, 2003) or spectral clustering
(Ng et al., 2002). The authors of (Chapelle et al.,
2003) use such methods to build a kernel for SVMs

Large Scale Manifold Transduction

and call these kernels “cluster kernels”. The “graph”-
SVM method proposed in (Chapelle & Zien, 2005) also
builds a kernel for SVM. In this method one embeds
in a space where distances are the shortest paths on
the graph weighted with the original distance mea-
sure, similar to the Isomap algorithm. Thus, points
connected by regions of high density are close to each
other in the new space.

To learn a single stage classifier, one has to introduce
a regularizing term in the objective function which di-
rectly encodes behavior such as that described in the
previous paragraph. The Laplacian Eigenmaps em-
bedding algorithm in particular employs an objective
function that is easily encoded in a classifier:∑

ij

Wij ||f(xi)− f(xj)||2 (8)

Such a regularizer has been used both to generalize a
Parzen-windows (Duda & Hart, 1973) type classifier
resulting in a method called label propagation (Zhu &
Ghahramani, 2002), and in SVMs. The SVM method
is called Laplacian SVMs (LapSVM) (Sindhwani et al.,
2005) and minimizes:

min
w,b

L∑
i=1

`(f(xi), yi)+γ||w||2+λ
U∑

i,j=1

Wij ||f(x∗i)−f(x∗j)||2

(9)

We speculate here that forcing the Euclidean distance
to be small if two points are assumed to be the same
label might be a little stringent as for prediction it is
only the sign of f(x∗) that is important. Moreover, we
also note that the lack of balancing constraint might
mean in high dimensions that all the unlabeled exam-
ples can collapse to a single prediction.

In contrast, the LDS method (Chapelle & Zien, 2005)
proposes to use both TSVM and manifold regularizers
at once in a two-stage method. First, the Isomap-like
embedding method of “graph”-SVM is used whereby
data is clustered. Then, in the new embedding space,
∇TSVM is applied. The authors found that using both
regularizers at once was better than using one type of
regularizer alone.

In summary, we have discussed several algorithms
which use two main types of regularizer: a cluster-
ing or an embedding that takes into account struc-
ture in the unlabeled data. Indeed TSVM is a kind of
large margin clustering as has been exploited in (Xu
et al., 2005) and is strongly related to classical tech-
niques like competitive learning (Duda & Hart, 1973).
In (Chapelle & Zien, 2005) the authors speculate that
manifold-based regularization has a stabilizing effect

on TSVM optimization. Without such neighborhood-
based regularization TSVMs only compare unlabeled
examples to the existing model, and not to each other.
Using both approaches as in LDS is thus a smart idea,
however it suffers from two problems: (i) the two-stage
approach seems ad-hoc and (ii) the method is slow.

In the next Section we propose a new approach which
remedies these problems.

3. Proposed Approach

We propose the following algorithm, named Manifold
Transduction: minimize

1
L

L∑
i=1

`(f(xi), yi) +
λ

U2

U∑
i,j=1

Wij `
(
f(x∗i), y

∗({i, j})
)

(10)
where

y∗(N) = sign(
∑
k∈N

f(x∗k)) (11)

where the edge weights Wij define pairwise similarity
relationships between unlabeled examples x∗.

This objective, like TSVMs objective, is non-convex
and there is no simple optimization scheme for solv-
ing it even for linear models such as kernel machines.
Because of this fact, and the scalability problems with
nonlinear kernel methods, we propose several novel al-
gorithmic choices in its implementation:

(i) We minimize this function in the primal by
stochastic gradient descent. This makes on-
line semi-supervised learning possible for the first
time.

(ii) In the nonlinear case we employ a multi-layer ar-
chitecture to define f(x). This makes both train-
ing and testing far faster than competing kernel
methods such as TSVM.

(iii) We also make a specific recommendation for the
implementation of an online balancing constraint.

We will now study this algorithm, and explain the rea-
son for these choices in detail.

3.1. Objective function

In (10) we propose a new loss function for unlabeled
examples:

`∗(f(x∗i)) = `
(
f(x∗i), y

∗(N)
)

(12)

where N is a set of examples that one believes share
the same label, e.g. a set of neighboring examples. The

Large Scale Manifold Transduction

function y∗ predicts the label of that set by taking the
mean prediction.

For both labeled and unlabeled training data we use
the hinge loss (3) as in SVMs.

In equation (10) we consider pairs of examples,
weighted by the graph Wij . If Wii = 1 and Wij = 0
for i 6= j then we recover the TSVM loss function:

`∗(f(x∗i)) = `
(
f(x∗i), sign(f(x∗i))

)
(13)

because we do not take neighborhood information into
account.

Setting Wij = 1 if x∗i is among the k-nearest neighbors
of x∗j , and zero otherwise, our algorithm becomes a
natural generalization of TSVM that regularizes using
neighborhood information. This is a similar regular-
izer to the neighborhood-based manifold regularizers
of Section 2.2 but based on clustering rather than em-
bedding.

We make the assumption that if two examples are
neighbors then they have the same class label, whereas
manifold-based regularization assumes they are close
in an embedding space. Our constraint is not as strict,
but captures the prior we wish to encode. For exam-
ple, if one class of data has more variance than the
other, then the regularization of (9) might focus on
that class, and ignore the other.

Extensions of our algorithm are also possible.
First, in the multi-class case where f(x∗) outputs
a c-dimensional vector, we can define y∗(N) =
argmax

∑
k∈N f(x∗k). Further, if the set N contains

more than two examples then our algorithm takes into
account a neighborhood in analogy to k-nearest neigh-
bor. This is not easily possible with the approach of
(9) which is limited to pairs.

3.2. Model: Multi-Layer Architecture

As already discussed, the issue that makes all the pre-
viously described algorithms computationally expen-
sive in the nonlinear case is their choice of the kernel
expansion (6). Instead we propose to use a multi-layer
model of the form:

f(x) =
d∑

i=1

w0
i hi(x) + b

where typically one chooses hidden units

hi(x) = S
(∑

j

wi
j xj + bi

)

Algorithm 1 Online Manifold Transduction
Input: labeled data (xi, yi) and unlabeled data x∗i
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize `(f(xi), yi)
Pick a random unlabeled example x∗i
Pick a random neighbor x∗j of x∗i
Predict label y∗ = y∗({i, j})
if fraction of recent assignments to class y∗ <
pest(y∗) (see Section 3.4) then

Make a gradient step for `(f(x∗i), y
∗)

end if
until stopping criteria is met.

where S is a non-linear squashing function. We use
the Hard Tanh function:

S(x) =

1 if x ≥ 1

−1 if x ≤ −1

x otherwise.

In the multi-class case we define one output fi(x) for
each class, but each function fi shares the same hidden
units hj , as is often done in neural network models.

The flexibility of using multi-layer architectures also
allows us to encode prior knowledge into our model.
For example, convolutional neural networks (CNNs)
(LeCun et al., 1998) have several layers of image patch
based feature maps applied across the input image.
Such networks have been shown to perform very well
in digit, face and 3D object detection tasks.

3.3. Optimization: Stochastic Gradient

We optimize our objective online, in the primal, using
stochastic gradient descent. Recent experimental com-
parisons show this approach often outperforms sophis-
ticated optimizer schemes (Bottou, 2007). To simplify
the hyperparameters we fix λ = 1 in our experiments,
yielding the method described in Algorithm 1. If the
model is multi-layered then we use backpropagation
(see, e.g. (Duda & Hart, 1973)) during the gradient
step. A typical stopping criteria is to use a validation
set or to measure the objective function value.

3.4. Balancing Constraint

To implement a balancing constraint while learning
online we keep a cache of (arbitrarily) the last 25c pre-
dictions f(x∗i) where c is the number of classes. This is
dependent on c because if c is large the cache must also
be large or the estimates will be too poor. We then
try to make the next prediction balanced assuming we

Large Scale Manifold Transduction

have a fixed estimate pest(y) of the probability of each
class, which without further information, can be esti-
mated from the labeled data: ptrn(y = i) = |{i:yi=i}|

L .
We consider two alternatives:

1. ∇bal Adding the term (7) to the objective func-
tion multiplied by a scaling factor as in ∇TSVMs.
The disadvantage of such an approach is that the
scaling factor is a further hyperparameter.

2. ignore−bal Count how many examples in the
cache have been attributed to each class. If the
next unlabeled example x∗ is given a label y∗ by
the model that already has too many examples
assigned to it, then we simply do not make a gra-
dient step for this example.

We note that the quality of ptrn depends on the ratio
of labeled examples L to the number of classes c, not
the input dimensionality d. Thus it may be a good
estimate in many real datasets. However, because in
some of the small datasets used in (Chapelle & Zien,
2005) it is a poor estimate we consider improving this
estimate by taking into account that we have access
to unlabeled data. We suggest the following simple
method pknn: label the k nearest neighbors of each
labeled example with its label. If k is large enough
some labeled points will label the same examples, and
so when we count the number of points assigned to
each class, we achieve a smoothed version of ptrn.

4. Experiments

4.1. Small Scale Datasets

We first report results on three small-scale datasets,
summarized in Table 1. We follow the methodology
in (Chapelle & Zien, 2005; Collobert et al., 2006) and
report the best mean test error for a fixed set of hyper-
parameters over 10 splits of the data. For our method,
we test standard transduction (our regularizer with no
neighborhood information), called TNN (Transductive
Neural Network), and our method with neighborhood
information, called ManTNN (Manifold Transduction
Neural Network). We also compute a baseline Neural
Network (NN).

For NN, TNN and ManTNN we fixed 50000 iterations
of Algorithm 1 and for ManTNN we chose 10 near-
est neighbors for all datasets. We also choose not to
minimize `(f(x∗i), y

∗) for the first 10L iterations so
that the classifier first finds a good model with la-
beled data alone before using the unlabeled data. We
thus have two free parameters: the choice of hidden
units {0,50,100,150,200} and the choices of learning
rate { 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 }.

Table 1. Datasets used in the experiments. The first three
are small-scale datasets using the same experimental setup
as found in (Chapelle & Zien, 2005). Mnist1h and Mnist1k
use the same experimental setup as in (Collobert et al.,
2006). Mnist1k+Invar uses shifted versions of digits to
make an unlabeled set of 630,000 examples.

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist1k 10 784 70k 1000
Mnist1k+Invar 10 784 630k 1000

Table 2. Test Error for various methods for enforcing the
balancing constraint, see Section 3.4 for explanation. The
“no bal” method does not use a balancing constraint. ptrn

and ptst balance using the training and testing set distribu-
tions respectively, and pknn estimates the true distribution
using a k-nn based method on the unlabeled data.

Uspst g50c
ptrn pknn ptst ptrn pknn ptst

TNN
no bal 22.3 – – 6.5 – –
∇bal 30.4 29.3 29.4 6.5 6.5 6.5
ignore-bal 19.1 16.1 12.5 6.1 6.3 6.3

ManTNN
ignore-bal 15.6 11.9 8.5 5.9 5.7 5.5

Table 3. Transductive (T-) and Manifold Transduction
(ManT-) versions of Neural Networks (NN) as well as a
baseline NN are compared to existing methods on Small-
Scale Datasets. Following (Chapelle & Zien, 2005) all
methods apart from those marked (*) have test error rates
reported for a fixed set of hyperparameters averaged over
10 splits, where that fixed set is chosen using the test er-
ror itself. All methods have 2 free hyperparameters. In
comparison, the methods marked (*) have parameters op-
timized on each split using 5-fold cross-validation.

g50c Text Uspst

SVM 8.32 18.86 23.18
SVMLight-TSVM 6.87 7.44 26.46
CCCP-TSVM 5.62 7.97 16.57
∇TSVM 5.80 5.71 17.61

LapSVM(∗) 5.4 10.4 12.7

LDS(∗) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
graph 8.32 10.48 16.92

NN 8.54 15.87 24.57
TNN 6.34 6.11 16.06
ManTNN 5.66 5.34 11.90

Large Scale Manifold Transduction

Balancing constraint comparison We first com-
pare the balancing constraint methods ∇bal and
ignore-bal and three different strategies for computing
the class distribution ptrn, pknn and ptst as described
in Section 3.4. ptrn measures the training set distri-
bution, pknn estimates the unlabeled set distribution
(which is what we are really interested in) by using a
k-nn like method, and ptst is the true distribution of
the unlabeled data, which is inaccessible in a real sit-
uation. A comparison on two of the datasets is given
in Figure 2 (results are similar for “text”).

We could not get ∇bal to work well in an online situa-
tion whereas the simple ignore-bal heuristic gives good
results. Due to the small dataset size the difference
in test error between using ptst and ptrn is actually
quite large. Using pknn seems to be a better estimate
than ptrn. We therefore adopt ignore-bal and the pknn

method in the following experiments.

Comparison with other methods We compare
TNN and ManTNN to several TSVM implementations
as well as label propagation, graph, LapSVM and LDS
on the small scale datasets. The results given in Table
3 show that both TNN and ManTNN are competi-
tive with existing approaches, and ManTNN, which
includes the manifold-based transductive regularizer,
outperforms TNN, which uses transduction alone.

4.2. Large Scale Dataset: MNIST

We then compared our method to SVMs and TSVMs
on a “semi-supervised version” of the MNIST digit
database, following (Collobert et al., 2006), using ei-
ther 100 or 1000 labeled examples and 70000 unlabeled
examples, and a validation set of 1000 examples for
choosing parameters. Error rates are measured on the
MNIST test set.

We used a two-layer neural network as before (baseline
NN, TNN, ManTNN), choosing from the same set of
hidden units and learning rates. We use the validation
set as a stopping criteria for Algorithm 1.

We also applied convolutional networks (CNNs), and
transductive versions of them, to this task. We chose
an architecture similar to (LeCun et al., 1998). There
are 6 layers. The first is six 3x3 spatial convolutions
(outputting 26x26x6 features to the next layer). The
second is six spatial 2x2 spatial subsamplings (out-
putting 13x13x6 features). The third is sixteen 4x4
spatial convolutions (outputting 10x10x16 features).
The fourth is sixteen 2x2 spatial subsamplings (giving
5x5x16 features). The fifth is fifty 5x5 spatial convo-
lutions (giving 1x1x50 features). This is followed by
a standard fully connected layer with n hidden units

Table 4. Results on Large-Scale Datasets: MNIST with
100 or 1000 labels and 70,000 unlabeled examples. Test Er-
ror is reported for Transductive (T-) and Manifold Trans-
duction (ManT-) versions of Neural Networks (NN) and
convolutional networks (CNN), and compared to SVMs
and TSVMs. ManTCNN (ptst) uses the test distribution
as the balancing constraint, which if this information were
available, would give improved performance.

Mnist1h Mnist1k
SVM 23.44 7.77
CCCP-TSVM 16.81 5.38
NN 25.81 10.70
TNN 18.02 6.66
ManTNN 7.30 2.88
CNN 22.98 6.45
TCNN 13.01 3.50
ManTCNN 6.65 2.15
ManTCNN (ptst) 1.96 1.87

Mnist1h (100 labeled pts)

Time (minutes)

T
e

st
 E

rr
o

r
(%

)

0 25 50 75 100 125 1507

9.5

12

14.5

17

19.5

22
TNN
ManTNN

Mnist1k (1000 labeled pts)

Time (minutes)

T
e

st
 E

rr
o

r
(%

)

0 100 2002.5

3.5

4.5

5.5

6.5

7.5

8.5

TNN
ManTNN

Figure 1. Test error versus training times for the TNN and
ManTNN algorithms on Mnist (100 or 1000 labeled exam-
ples, 70000 unlabeled examples). These results compare
favourably with the time to train the fastest TSVM algo-
rithm (Collobert et al., 2006) which took 41.9 hours on the
same machine.

(chosen as in the two-layer net), followed by a linear
layer yielding the final 10 outputs (class predictions).
CNNs encode prior knowledge about spatial features
within the image, which should give improved accu-
racy over a standard NN.

The results are given in Table 4. The baseline NN
performs slightly worse than SVM, but CNNs per-
form slightly better. Applying transduction, TNN
is slightly worse than TSVMs, but TCNN is slightly
better. Manifold Transduction outperforms all these
methods, with ManTNN and ManTCNN performing
almost as well as each other. The last row in the ta-
ble shows ManTCNN trained with the true balancing
constraint (knowing the test distribution). It appears
that for only 100 labeled examples knowing this distri-
bution could make results even better, although with
1000 labeled examples this is less important.

Large Scale Manifold Transduction

Training time for TNNs and ManTNNs are given in
Figure 1. The results are shown for the best choice of
hidden units and learning rate as chosen on the valida-
tion set. TNNs take around one hour to reach conver-
gence, and ManTNNs (omitting the time to compute
neighbors for ManTNN) take slightly longer. These
times should be compared to the fastest TSVM imple-
mentation, CCCP-TSVMs, which took 41.9 hours on
the same machine. Our code is not particularly op-
timized and is written in a scripting language with a
C++ back-end. On MNIST, a nonlinear TNN with
200 hidden units can process 1 million unlabeled ex-
amples in an online fashion in 12.5 minutes.

Mnist1k+Invar We also performed experiments on
MNIST1k with a larger unlabeled set of 630,000 exam-
ples by translating the original set by at most one pixel
in each direction. TNN achieves a test error of 5.23%
on the original test set, when choosing the training it-
eration that gives the minimum validation error, and
ManTNN achieves a test error of 2.43%. Both methods
outperform their counterparts trained with less unla-
beled data using MNIST1k. Training time took 4.47
hours and 3.96 hours respectively for the two algo-
rithms, including the computation time for generating
the invariances.

5. Conclusions

In this article we introduced a large scale non-
linear method that elegantly combines the two
main regularization principles for discriminative semi-
supervised learning: transduction and neighborhood-
based (manifold-based) regularization. Our future
work will be to apply this approach to real large-scale
nonlinear problems e.g. applications in vision and nat-
ural language processing.

References

Belkin, M., & Niyogi, P. (2003). Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation.

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold
regularization: a geometric framework for learning from
Labeled and Unlabeled Examples. Journal of Machine
Learning Research, 7, 2399–2434.

Bennet, K., & Demiriz, A. (1998). Semi-Supervised Sup-
port Vector Machines. NIPS 12, 1998. MIT Press, Cam-
bridge, MA.

Bottou, L. (2007). http://leon.bottou.org/projects/
sgd.

Burges, C. (1996). Simplified Support Vector Decision
Rules. ICML, 71–77.

Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-
supervised learning. Adaptive computation and machine
learning. Cambridge, Mass., USA: MIT Press.

Chapelle, O., Weston, J., & Schölkopf, B. (2003). Cluster
kernels for semi-supervised learning. NIPS 15 (pp. 585–
592). Cambridge, MA, USA: MIT Press.

Chapelle, O., & Zien, A. (2005). Semi-supervised classifi-
cation by low density separation. AISTATS (pp. 57–64).

Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006).
Large scale transductive svms. Journal of Machine
Learning Research, 7, 1687–1712.

Duda, R. O., & Hart, P. E. (1973). Pattern classification
and scene analysis. New York: Wiley & Sons.

Fung, G., & Mangasarian, O. (2001). Semi-supervised sup-
port vector machines for unlabeled data classification.
Optimization Methods and Software, 15, 29–44.

Joachims, T. (1999). Transductive inference for text clas-
sification using support vector machines. International
Conference on Machine Learning, ICML.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86.

Ng, A. Y., Jordan, M., & Weiss, Y. (2002). On spec-
tral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems. Cambridge,
MA: MIT Press.

Sindhwani, V., & Keerthi, S. S. (2006). Large scale semi-
supervised linear SVMs. SIGIR ’06: Proceedings of the
29th annual international ACM SIGIR conference on
Research and development in information retrieval (pp.
477–484). New York, NY, USA: ACM Press.

Sindhwani, V., Niyogi, P., & Belkin, M. (2005). Beyond
the point cloud: from transductive to semi-supervised
learning. International Conference on Machine Learn-
ing, ICML.

Steinwart, I., & Scovel, C. (2005). Fast rates to bayes for
kernel machines. NIPS, 17, 1345–1352.

Tenenbaum, J., de Silva, V., & Langford, J. (2000). A
global geometric framework for nonlinear dimensionality
reduction. Science, 290, 2319–2323.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley and Sons, New York.

Xu, L., Neufeld, J., Larson, B., & Schuurmans, D. (2005).
Maximum margin clustering. Advances in Neural Infor-
mation Processing Systems, 17, 1537–1544.

Zhu, X., & Ghahramani, Z. (2002). Learning from labeled
and unlabeled data with label propagation (Technical Re-
port CMU-CALD-02-107). Carnegie Mellon University.

