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Résumé

Cette thèse aborde de façon générale les algorithmes d’apprentissage, avec

un intérêt tout particulier pour les grandes bases de données. Après avoir for-

mulé le problème de l’apprentissage de manière mathématique, nous présentons

plusieurs algorithmes d’apprentissage importants, en particulier les Multi Layer

Perceptrons, les Mixture d’Experts ainsi que les Support Vector Machines. Nous

considérons ensuite une méthode d’entrâınement pour les Support Vector Ma-

chines, adaptée aux ensembles de données de tailles raisonnables. Cepen-

dant, l’entrâınement d’un tel modèle reste irréalisable sur de très grande bases

de données. Inspirés par la stratégie “diviser pour régner”, nous proposons

alors un modèle de la famille des Mixture d’Experts, permettant de séparer le

problème d’apprentissage en sous-problèmes plus simples, tout en gardant de

bonnes performances en généralisation. Malgré de très bonnes performances en

pratique, cet algorithme n’en reste pas moins difficile à utiliser, à cause de son

nombre important d’hyper-paramètres. Pour cette raison, nous préférons nous

intéresser ensuite à l’amélioration de l’entrâınement des Multi Layer Percep-

trons, bien plus faciles à utiliser, et plus adaptés aux grandes bases de données

que les Support Vector Machines. Enfin, nous montrons que l’idée de la marge

qui fait la force des Support Vector Machines peut être appliquée à une cer-

taine classe de Multi Layer Perceptrons, ce qui nous mène à un algorithme très

rapide et ayant de très bonnes performances en généralisation.

Mots-Clefs : Algorithmes d’Apprentissage, Grandes Bases de Données, Multi

Layer Perceptrons, Mixture d’Experts, Support Vector Machines, Diviser pour

Régner, Gradient Stochastique, Optimisation, Marge.
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Summary

This thesis aims to address machine learning in general, with a particu-

lar focus on large models and large databases. After introducing the learning

problem in a formal way, we first review several important machine learning

algorithms, particularly Multi Layer Perceptrons, Mixture of Experts and Sup-

port Vector Machines. We then present a training method for Support Vector

Machines, adapted to reasonably large datasets. However the training of such

a model is still intractable on very large databases. We thus propose a divide

and conquer approach based on a kind of Mixture of Experts in order to break

up the training problem into small pieces, while keeping good generalization

performance. This mixture model can be applied to any kind of existing ma-

chine learning algorithm. Even though it performs well in practice the major

drawback of this algorithm is the number of hyper-parameters to tune, which

makes it difficult to use. We thus prefer afterward to focus on training im-

provements for Multi Layer Perceptrons, which are easier to tune, and more

suitable than Support Vector Machines for large databases. We finally show

that the margin idea introduced with Support Vector Machines can be applied

to a certain class of Multi Layer Perceptrons, which leads to a fast algorithm

with powerful generalization performance.

Keywords: Machine Learning, Large Databases, Multi Layer Perceptrons,

Mixture of Experts, Support Vector Machines, Divide and Conquer, Stochastic

Gradient Descent, Optimization, Margin.
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1 Introduction

Under its somewhat pompous title “Large Scale Machine Learning”, this

thesis aims to address machine learning in general, with a particular focus on

large models and large databases. An alien, a normal human or more simply a

reader not aware of this field, would have already stopped and asked...

What is machine learning?

Machine learning is the study of algorithms which can learn. According to our

favorite dictionary, an algorithm is “a precise rule or set of rules specifying

how to solve some problem”. Learning is “a behavioral modification especially

through experience or conditioning”. Note the important word experience. We

are interested here in algorithms which can modify their behavior according to

some experience. As algorithms are generally processed by a computer, and as

we will define later learning in a mathematical way, machine learning is in the

end a combination of mathematics and computer science.

What is a model?

The set of rules which defines an algorithm is fixed, but has some modifiable

parameters. Changing these parameters changes the behavior of the algorithm.

The set of these parameters defines what we call a model.

What is a database?

A database is the experience that we give to an algorithm. A database also

represents a task to achieve. We show this task to the algorithm, and hopefully

the algorithm changes its behavior in order to be good at this task. Then, we

say that the algorithm learns if it is able to perform well at a similar task that

it has never seen before. That is, it is able to generalize. Of course, if the task
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is complex, then the algorithm will be complex as well. In other words, the

larger the database, the larger the model defined by the algorithm will be.

And anyway, why this thesis?

Machine learning techniques are relevant to several areas such as data mining,

computer vision and speech recognition, which are dealing with an increasing

amount of data. It can be billions of lines of text, Terabytes of images or hours

of speech. Machine learning techniques need to be adapted and improved

for these applications. A mathematician who proposes a new algorithm is

in general not interested in knowing if it is tractable on large databases. An

engineer will try in general to patch an existing machine learning technique to

suit his needs. We do not pretend to solve every large practical problem here.

But we would like to address the problem of learning on large databases in a

general way (it will not be specific to text, images or speech) always keeping

in mind that what we really want is to generalize. We would like to improve

and extend existing machine learning techniques in this way.

Fundamentals

This thesis aims to be self-explanatory, supposing that the reader has a

good knowledge of mathematics and in particular probability theory. Thus, in

the first chapters we define formally our framework. Chapter 2 defines the con-

cept of learning in a mathematical way as well as fundamental concepts used in

machine learning. It also gives an overview of the theory which explains why

machine learning works. Chapter 3 defines several classical and important algo-

rithms used in this thesis, and in particular Multi Layer Perceptrons, Mixture

of Experts, and Support Vector Machines. Chapter 4 gives the experimental

framework used to illustrate our following theoretical developments.

Contributions

The next chapters are dedicated to the improvement and extension of pre-

viously introduced machine learning algorithms. Each chapter corresponds to

one or several reviewed and published papers, that we rewrote here in a unified

manner. We also improved them, extended them, and tried to give a better un-

derstanding and analysis of our theoretical assertions, taking advantage of our

global view and experience gained while carrying out this thesis. The chapters

appear in chronological order, preserving the ideas which drove our research.
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Optimization for Support Vector Machines

First, in Chapter 5 we present a training method for Support Vector Machines,

adapted to reasonably large databases. We had to start with this training

method, because Support Vector Machines are a recent important machine

learning algorithm, but which was not very suitable for large databases at the

beginning of its history. Even with the state-of-the-art algorithm we propose,

Support Vector Machines are still intractable for very large scale databases.

Divide and Conquer

We thus propose a “divide and conquer” approach based on a kind of Mixture

of Experts in Chapter 6, in order to try to break up the training problem into

small pieces, while keeping the good generalization properties of Support Vec-

tor Machines. We also apply this divide and conquer technique on Multi Layer

Perceptrons, which appears to work fairly well. Unfortunately, Mixture of Ex-

perts have plenty of “free” parameters which have to be set by their user. In

practice a lot of trial-and-error steps are needed to obtain the perfect Mixture.

Even if the “training” is fast, the “tuning” takes time.

Optimization for Multi Layer Perceptrons

We focus on Multi Layer Perceptrons in Chapter 7, which are much easier to

tune and which also appeared more suitable for large databases than Support

Vector Machines. In particular, we propose to study some training problems

raised in the previous chapter, with the hope to find methods for faster Multi

Layer Perceptron training on large databases.

Margin for Everyone

Finally, we wanted to perform a deep comparison between Support Vector

Machines and Multi Layer Perceptrons, in order to answer the question “is

it possible to modify the old Multi Layer Perceptron algorithm with some

improvements for better generalization supplied by the new Support Vector

Machine algorithm?”. We answer this question in Chapter 8.

We give a general conclusion and personal thoughts in Chapter 9, as well as

possible future research directions.
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2 Statistical Learning Theory

Learning can be defined as a modification of a behavioral tendency by expe-

rience. The machine learning field aims to study ways to make machines learn.

In fact, Turing (1950) who first introduced the concept of a “learning machine”,

pointed out that one can separate the hardware and programming aspects of

the machine. Following this idea, machine learning focuses on algorithms which

can learn, as defined in Definition 2.1, and disregards the hardware only nec-

essary to implement the algorithms. It is also important to notice that our

interest is not “learning by heart”, but “learning to generalize”.

Definition 2.1 An algorithm is said to learn from experience with respect to

some class of tasks, if its performance on this class of tasks increases with

experience, given a measure of performance.

In this chapter we will introduce the notion of a machine learning algorithm in

a statistical mathematical framework. We first define the learning process as a

process of choosing an appropriate function from a given set of functions. We

then present the statistical learning theory introduced by Vapnik (1995) which

is the foundation of modern machine learning.

Learning With a Finite Number of Examples

We first consider a distribution represented by a density P : Z → R (where

Z is a real vector space), that is unknown and which represents the “class of

tasks” to learn, as suggested in Definition 2.1. We then consider L observations

REF A. M. Turing. Computing machinery and intelligence. Mind: A Quarterly Review of

Psychology and Philosophy, 59(236):433–461, 1950.

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.
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(the training examples)

z1, z2, . . . , zL (2.1)

drawn independently and identically from this distribution. These observations

represent the “experience” that we will give to the learning algorithm, and is

usually called the training set , or the empirical data. We then choose a set of

functions F and we define a loss function (the “measure of performance”)

Q : Z × F → R . (2.2)

With this notation, the learning process can be described as the search of a

function f in F which minimizes the cost function Q over Z. In other words,

a machine learning algorithm is an algorithm which finds a way to minimizes

the expected risk (or generalization error)

R : f ∈ F 7−→ E(Q(z, f)) =
∫
Z
Q(z, f)P (z) d z , (2.3)

with the knowledge of the training set (2.1) only.

In practice, we usually distinguish three main machine learning tasks; first

of all, if f ∈ F is of the form f : X → Y, and if the training examples can be

rewritten as zl = (xl, yl) ∈ X × Y, we have the following categories:

• classification : Y is a finite set, and y ∈ Y represents a category (a class).

The aim is to find a function f ∈ F which for all examples (x, y) ∈ X ×Y
assigns input vector x to its corresponding class y. Thus, the loss function

could be

Q(z, f) =

{
0 if f(x) = y

1 otherwise.

• regression: in this case, Y is a real vector space, and we would like to

find the function f ∈ F such that f(x) is as close as possible to y, with

respect to an arbitrarily chosen distance, for all examples (x, y) ∈ X ×Y.

If considering the Mean Squared Error (MSE) distance, the loss function

appears to be

Q(z, f) = ‖f(x)− y‖2 .

In that case, a minimum of the expected risk is then reached for the

expectation of y knowing x, that is for the function f?(x) = E(y|x).

Indeed, for all functions f we can derive

R(f?) = E[ ‖E(y|x)− y‖2 ]

= E[ ‖f(x)− y‖2 ] + E[ ‖E(y|x)− f(x)‖2 ]

+ 2E[ (E(y|x)− f(x)) · (f(x)− y) ] .
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Using the classical equality E(·) = E(E(·|x)) in the last term of the

equation leads to

R(f?) = R(f)−E[ ‖E(y|x)− f(x)‖2 ] ≤ R(f).

The conditional expectation E(y|x) is thus a minimum of the expected

risk, which motivates the usage of the MSE distance.

The third main task is density estimation, where the goal is to estimate the

unknown density P . As f ∈ F has to be a density, f takes values in R+
? , and

must satisfy the constraint
∫
Z f(z) d z = 1. Usually we then try to minimize

the Kullback-Leibler (see Cover and Thomas, 1991) distance between f and P .

Hence,

Q(z, f) = − log f(z) .

Empirical Risk Minimization

As already mentioned, machine learning aims to minimize the expected

risk (2.3) using only the information of the training set (2.1). Unfortunately, it

is not a simple optimization problem, because the distribution P is unknown

in (2.3). We thus consider instead the minimization of the empirical risk

RL : f ∈ F 7−→ 1
L

L∑
l=1

Q(zl, f) . (2.4)

The use of this empirical risk is strongly motivated by the weak law of large

numbers which guarantees the convergence in probability of the empirical risk

to the expected risk, when increasing the number of training examples, for any

f independent from the training set:

∀ε > 0 P[ |RL(f)−R(f)| > ε ] −→
L→∞

0 . (2.5)

There is also a finer result obtained with the Hoeffding (1963) inequality, when

an upper bound τ of (supQ− inf Q) exists:

∀ε > 0 P[ |RL(f)−R(f)| > τ ε ] ≤ 2 exp (−2 ε2 L) . (2.6)

Unfortunately, these results do not guarantee the convergence of the mini-

mum of the empirical risk to the minimum of the expected risk. One main

REF T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and

Sons, 1991.

REF W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal

of the American Statistical Association, 58:13–30, 1963.
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concern of statistical learning theory is the study of this convergence, that is,

the non-trivial consistence (as stated in Definition 2.2) of the Empirical Risk

Minimization principle.

Definition 2.2 The Empirical Risk Minimization principle is said “non-trivially

consistent” if for any subset Fc, c ∈ R

Fc = { f : R(f) ≥ c }

the following convergence in probability holds:

∀ε > 0 P[ | inf
f∈Fc

RL(f)− inf
f∈Fc

R(f)| > ε ] −→
L→∞

0 .

A Uniform Convergence Problem

It is interesting to note that if we strengthen the convergence in probability (2.5)

to uniform convergence in probability

∀ε > 0 P[ sup
f∈F
|RL(f)−R(f)| > ε ] −→

L→∞
0 , (2.7)

then the non-trivial consistence of the Empirical Risk Minimization principle

is ensured. Indeed, let us first note fL, the optimal function found with the

minimization of the empirical risk RL, and f?, the function which minimizes

the expected risk. Then given an arbitrary ε > 0 and η > 0 the uniform

convergence (2.7) implies that there exists a value L(ε, η) such that for all

L ≥ L(ε, η) with probability 1− η the following inequalities hold:

|RL(fL)−R(fL)| ≤ ε
|RL(f?)−R(f?)| ≤ ε .

(2.8)

Thus, for all L ≥ L(ε, η), the difference between the minimum of the empirical

risk and the expected risk can be bounded as the following:

| inff∈F RL(f)− inff∈F R(f)| = |RL(fL)−R(f?)|
≤ |RL(fL)−R(fL)|

+|R(fL)−R(f?)|
≤ ε+R(fL)−R(f?)︸ ︷︷ ︸

≥ 0

.

(2.9)

Moreover, we have

R(fL)−R(f?) = (R(fL)−RL(fL))

+RL(fL)−RL(f?)︸ ︷︷ ︸
≤ 0

+(RL(f?)−R(f?))

≤ 2 ε .

(2.10)
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Substituting (2.10) into (2.9) gives

| inf
f∈F

RL(f)− inf
f∈F

R(f)| ≤ 3 ε ,

which proves the non-trivial consistence of the principle, as stated in Defini-

tion 2.2. Uniform convergence (2.7) is thus a sufficient condition for non-trivial

consistence. In fact, with more complex derivations it is possible to demon-

strate (see Vapnik, 1995) that only one-sided uniform convergence (see Theo-

rem 2.1) is sufficient, and even necessary.

Theorem 2.1 Let constants a and b be such that for all functions f in the set

{Q(z, f), f ∈ F } the following inequality is satisfied:

a ≤ R(f) ≤ b .

Then a necessary and sufficient condition for the non-trivial consistence of

the Empirical Risk Minimization principle is that there is a one-sided uniform

convergence of the empirical risk RL to the expected risk R:

∀ε > 0 P[ sup
f∈F

(RL(f)−R(f)) > ε ] −→
L→∞

0 .

Unfortunately, it is not possible to apply this result in practice, because it

depends on the expected risk R, which depends itself on the unknown distribu-

tion P . However, as we will show in the next section, Vapnik and Chervonenkis

(1971) developed some sufficient conditions which do not suffer from this prob-

lem.

From Glivenko-Cantelli to Vapnik-Chervonenkis

The Glivenko-Cantelli (1933) theorem is a classical theorem in probability the-

ory, which states the uniform convergence of the empirical repartition function

to the true repartition function, when increasing the number of samples used

for the empirical estimation. It is possible to reformulate this theorem as

in Theorem 2.2.

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.

REF V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-

quencies of events to their probabilities. Theory of Probability and its Applications, 16(2):

264–280, 1971.

REF F. P. Cantelli. Sulla determinazione empirica della leggi di probilita. Giornale

dell’Instituto Italiano degli Attuari, 4, 1933.
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Theorem 2.2 (Glivenko-Cantelli) If we consider the set of functions F? =

{ z 7→ x− z, ∀x ∈ R } and the loss function

Q(z, f) =

{
1 if f(z) > 0

0 otherwise.

then the following relation always holds, for any distribution P :

∀ε > 0 P[ sup
f∈F?

|RL(f)−R(f)| > ε ] −→
L→∞

0 .

Hence, at least for the particular set of functions F?, the uniform conver-

gence (2.7) holds, and thus the Empirical Risk Minimization principle is non-

trivially consistent. Vapnik and Chervonenkis (1971) proposed a generalization

of this theorem, which depends on the complexity of the set of functions F .

The measure of this complexity is called capacity or Vapnik-Chervonenkis di-

mension (VC-dimension). We give below the definition of the capacity in the

case of classification.

Definition 2.3 The VC-dimension (capacity) of a set of indicator functions

{Q(z, f), f ∈ F } is equal to the largest number of vectors z1, . . . , zL that can

be separated into two different classes in all the 2L possible ways using this set

of functions.

If we denote the VC-dimension as h, then the generalized Glivenko-Cantelli

theorem can be stated in the following theorem.

Theorem 2.3 (Vapnik-Chervonenkis) Consider a set of functions F with

a finite VC-dimension h, and a loss function Q such that there exists a constant

τ = supQ−inf Q. Then for every distribution P and for all ε > 0, the following

inequality holds:

P[ sup
f∈F?

|RL(f)−R(f)| > ε ] ≤ 4 exp

(
h

(
1 + log(

2L
h

)
)
−
(
ε− 1

L

)2
L

τ2

)
.

Combining the result of Theorem 2.3 applied to the function fL which mini-

mizes the empirical risk RL and the Hoeffding inequality (2.6) applied to the

function f? which minimizes the expected risk R, leads easily to Theorem 2.4.

Theorem 2.4 Consider a set of functions F with a finite VC-dimension h,

and a loss function Q such that there exists a constant τ = supQ − inf Q.

REF V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-

quencies of events to their probabilities. Theory of Probability and its Applications, 16(2):

264–280, 1971.
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L

R

inf R(f)

R(fL)

RL(fL)

Figure 2.1. Evolution of the empirical risk RL and the expected risk R

(applied to the function fL found by the minimization of the empirical risk),

with respect to the number of training examples. In this case, the Empirical

Risk Minimization principle is non-trivially consistent.

Let f? be the minimum of the expected risk R, and fL the minimum of the

empirical risk RL. Then for every distribution P and for all η > 0, the following

inequality holds with at least probability 1− 2 η:

R(fL) ≤ inf
f∈F

R(f) +
1
L

+ τ

√h
(
1 + log( 2 L

h )
)
− log (η/4)

L
+

√
− log η

2L

 . (2.11)

Note that if the Empirical Risk Minimization principle is applied to a set of

functions F with a finite VC-dimension, then Theorem 2.3 guarantees the uni-

form convergence of the empirical risk RL to the expected risk R when increas-

ing the number of training examples. Hence, if F has a finite VC-dimension

the Empirical Risk Minimization principle is non-trivially consistent. In prac-

tice, Theorem 2.3 and Theorem 2.4 allow us to give the global shape of the

empirical risk and the expected risk with respect to the number of training

examples, as depicted in Figure 2.1. It is also important to retain from (2.11)

that the more training examples we have, the better in generalization will the

solution found by the Empirical Risk Minimization principle be.
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Model Selection

In practice, we usually have a fixed number of training examples. Thus,

according to (2.11), we have to decrease the VC-dimension h of the set of func-

tions F we consider, if we want to guarantee that the minimum of the expected

risk is approached with the function which minimizes the empirical risk. How-

ever, if the VC-dimension of F is too small, then the empirical risk may not be

well minimized, and as a consequence the generalization may be poor. This fol-

lows Occam’s razor principle which states that the simplest solution which fits

a problem should be selected: we have to choose a trade-off between the quality

of the Empirical Risk Minimization and the complexity of the set of functions

we consider. A formal analysis of this problem has been proposed by Vapnik

and Chervonenkis (1974) and is known as Structural Risk Minimization.

Structural Risk Minimization

The minimum of the expected risk being unknown, the bound (2.11) of the

expected risk for the function fL which minimizes the empirical risk is in-

tractable. Hence, we consider instead the following result obtained by apply-

ing Theorem 2.3 to the function fL. For all η > 0, with at least probability

1− η,

|R(fL)−RL(fL)| ≤ 1
L

+ τ

√
h
(
1 + log( 2 L

h )
)
− log (η/4)

L
. (2.12)

By considering this equation, Vapnik and Chervonenkis (1974) proposed a new

principle called Structural Risk Minimization. The idea is to minimize simul-

taneously the empirical risk, and the confidence interval given in (2.12). More

formally, let us suppose that the set of functions F has a structure such that

there exists p subsets (Fi)1≤i≤p such that

F1 ⊂ F2 ⊂ · · · ⊂ Fp = F ,

and where their capacity hi are finite and ordered

h1 ≤ h2 ≤ · · · ≤ hp .

Then, if we note f i
L the function found by minimizing the empirical risk over

the set of function Fi, it appears obvious that

RL(fp
L) ≤ RL(fp−1

L ) ≤ · · · ≤ RL(f2
L) ≤ RL(f1

L) .

REF V. N. Vapnik and A. Y. Chervonenkis. The Theory of Pattern Recognition. Nauka,

1974.

REF V. N. Vapnik and A. Y. Chervonenkis. The Theory of Pattern Recognition. Nauka,

1974.
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Empirical Risk

Bound on the

Expected Risk

Confidence
Interval

h

R

h?

Figure 2.2. Evolution of the empirical and expected risks with respect to

the VC-dimension h. The training set is fixed. The Structural Risk Minimiza-

tion principle aims at finding the optimal VC-dimension h?.

Moreover, if we apply equation (2.12) to each subset Fi, we obtain that the

confidence interval between the expected risk and the empirical risk increases

with respect to the VC-dimension hi. We thus obtain the situation summa-

rized in Figure 2.2. On the first hand, if the VC-dimension hi is small, then

the empirical risk RL(f i
L) is high, and we say that the function f i

L under-fits

(or that we under-train). In that case, as the training performance is poor,

the generalization performance is poor as well. On the other hand, if the VC-

dimension hi is large, then the empirical risk RL(f i
L) is small. We say that f i

L

over-fits (or that we over-train). Here, the expected risk bound is high, and we

cannot guarantee a good generalization. Thus, the Structural Risk Minimiza-

tion principle aims at finding the optimal trade-off between the quality of the

approximation on the training set and the complexity of the set of functions

Fi. This is also related to the bias-variance dilemma (Geman et al., 1992).

Validation Method

Even if the Structural Risk Minimization principle gives a good idea of the

evolution of the expected risk with respect to the VC-dimension, as shown

in Figure 2.2, it is often intractable in practice. Indeed, two problems occur:

first, the VC-dimension is usually hard to compute, and thus it is not always

possible to evaluate the bound (2.12). Moreover, the VC-dimension is also often

REF S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance

dilemma. Neural Computation, 4(1):1–58, 1992.
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very large as compared to the number of training examples: the bound (2.12) is

in practice really sub-optimal. To overcome these problems, it is very common

to use instead a validation set (or hold-out set) to estimate the expected risk.

The validation method supposes the existence of another set of observa-

tions (z̃l)1≤l≤L̃ (the validation set) drawn independently and identically from

the unknown distribution P , and independent from the training set (zl)1≤l≤L.

Then we can compute an estimate R̃L̃ of the expected risk for the function fL

which minimizes the empirical risk:

R̃L̃ =
1
L̃

L̃∑
l=1

Q(z̃l, fL) . (2.13)

As fL does not depend on the validation set, we can obtain from the Hoeffding

inequality (2.6) that for all η > 0, with probability 1− η, we have

|R(fL)− R̃L̃(fL)| ≤ τ
√
− log (η/2)

2L
,

where τ = (supQ− inf Q). This bound is quite tight in practice: for example,

with 15000 validation examples we are ensured to approximate the expected

risk with less than 1% error, with a probability of 0.9 (in the classification

case). However, we often need more precision. We are thus forced to make

some hypothesis on the data distribution. For classification, we usually rely on

standard statistical tests such that the McNemar test (see for example Siegel,

1956) or the proportion test (Snedecor and Cochran, 1989). For more infor-

mation, a recent comparison of statistical tests for machine learning is given

in Dietterich (1998).

Regularization Theory

Regularization theory, first introduced by Hadamard (1932) and Tikhonov

and Arsenin (1977), highlights the fact that many mathematical problems are

ill-posed (that is, not well-posed as proposed by Definition 2.4), and aims at

fixing these problems.

REF S. Siegel. Nonparametric Methods for the Behavioral Sciences. McGraw-Hill, 1956.

REF G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State University Press,

eighth edition, 1989.

REF T. G. Dietterich. Approximate statistical test for comparing supervised classification

learning algorithms. Neural Computation, 10(7):1895–1924, 1998.

REF J. Hadamard. Le problème de Cauchy et les équations aux dérivées partielles linéaires

hyperboliques. Hermann, 1932.

REF A. N. Tikhonov and V. Y. Arsenin. Solution of ill-posed problems. Winston & Sons,

1977.
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Definition 2.4 We say that a mathematical problem is well-posed (in the sense

of Hadamard) if the solution exists, is unique, and smoothly depends on the

data.

For example, the problem of finding a linear operator f which satisfies Af = b

(where A is a matrix and b is a vector) is ill-posed if the matrix A is not very

well conditioned: if we know an approximate version b̃ of b, then the solution

f̃ of the problem A f̃ = b̃ may not be close to the solution f of the original

problem. The machine learning field has a strong interest in regularization

theory, because the Empirical Risk Minimization problem is usually ill-posed:

a slight change in the training set may considerably change the solution.

In order to transform an ill-posed problem into a well-posed problem, Tikhonov

proposed to first consider a measure of regularity Ω(f) on the set of functions

F . Then, instead of considering the empirical risk, we consider the regularized

empirical risk

RL(f) + µΩ(f) , (2.14)

where µ ∈ R+ is a hyper-parameter which controls the regularization. If we

note fµ the minimum of (2.14), then minimizing the regularized risk is equiv-

alent to minimizing the empirical risk on the set of functions Fµ = { f ∈
F , Ω(f) ≤ Ω(fµ) }. When doing regularization, we are thus reducing the

set of functions we consider: in some cases, if we control the VC-dimension

of Fµ, regularization can implement the Structural Risk Minimization princi-

ple (Evgeniou et al., 2000). Finally, note that regularization theory was in-

troduced very early in machine learning (see Plaut et al., 1986), and has been

studied in detail more recently by Girosi et al. (1995).

Summary

In this chapter, we introduced the notion of machine learning in a statis-

tical framework. We defined learning as a process of choosing an appropriate

function which minimizes an “expected risk”. As the expected risk is not cal-

culable, we defined the Empirical Risk Minimization principle, and we gave

an intuition of when the usage of this principle is relevant for approaching

REF T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector

machines. Advances in Computational Mathematics, 13(1):1–50, 2000.

REF D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back prop-

agation. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Computer Science

Department, 1986.

REF F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks archi-

tectures. Neural Computation, 7(2):219–269, 1995.
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the expected risk minimum. After the definition of the complexity of a set

of functions, we also gave a generalization of the Glivenko-Cantelli theorem,

which guarantees in a more precise way the relevance of the Empirical Risk

Minimization for “not too complex” sets of functions. We then introduced the

Structural Risk Minimization principle which helps in choosing the complexity

of the set of functions we consider. As this principle is usually intractable in

practice, we briefly introduced the technique of validation. Finally, we gave an

overview of regularization theory, which has some links with learning theory.

Now that we have introduced the basics of statistical machine learning theory,

we will review in the next chapter the main machine learning algorithms that

we will consider in this thesis.



3 Algorithms

During the last fifty years of machine learning research, several algorithms

have been developed in the community. However, time has made its own selec-

tion, and only a few algorithms are really used in practice. We propose in this

chapter an introduction to several algorithms which were among the most pop-

ular in their time: the Perceptron algorithm, Multi Layer Perceptrons (MLPs),

Mixtures of Experts (MoEs), and finally Support Vector Machines (SVMs).

Framework

We consider in this chapter a training set (xl,yl)1≤l≤L, where xl ∈ Rd rep-

resents the input vector of the lth example, and yl represents its corresponding

target. We will focus on two problems: a two-class classification problem and a

regression problem. Note that we differentiate between parameters (also called

weights, and which are trained by an algorithm), and hyper-parameters (which

are parameters chosen by the user of an algorithm).

Classification

This classification problem supposes yl ∈ {−1, 1}. The aim is to find a model

Rd −→ R
x 7→ fθ(x)

(3.1)

such that the decision surface

{x ∈ Rd, fθ(x) = 0 }

separates positive class examples and negative class examples. In other words,

for any example (x, y), the class assigned by the model is “sign fθ(x)” and we
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(a)

y

x

(b)

Figure 3.1. (a) A classifier is a decision surface which separates two sets

of examples, here represented by crosses (blue) and circles (red), separated by

the black curve. (b) Regression aims to find a model which predicts a target

y given an input example x, for all examples (x, y). Here the black curve fits

red circles.

would like to have y = sign fθ(x), where we define

sign(z) =

{
−1 if z ≤ 0

1 if z > 0 .

The generic real vector θ represents the parameters that we have to train. The

situation is summarized in Figure 3.1a.

Regression

For regression problems, we have yl ∈ Rn, and we would like to find a model

Rd −→ Rn

x 7→ fθ(x)
(3.2)

such that for any example (x, y) the target y is predicted knowing the input

vector x, that is y = fθ(x). As for classification, θ represents the parameters

we have to train. The situation is summarized in Figure 3.1b.

Perceptrons

The original Perceptron algorithm introduced by Rosenblatt (1957), is

usually considered one of the first machine learning algorithms. It is a linear

REF F. Rosenblatt. The perceptron: a perceiving and recognizing automaton. Technical

Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, N.Y., 1957.
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classifier. Thus, we consider the model

fθ(x) = w · x + b , (3.3)

where θ = (w , b) are the parameters to train. The training algorithm proposed

by Rosenblatt (see Algorithm 3.1) considers each training example (xl, yl)

successively. If one of them is misclassified, that is if yl fθ(xl) ≤ 0, then the

Algorithm 3.1 Original Perceptron Algorithm
Initialize w and b to zero

repeat

for l ∈ {1..L} do

if yl (w · xl + b) ≤ 0 then

w ← w + yl xl

b← b+ yl

end if

end for

until termination criterion

parameters are updated such that yl fθ(xl) is increased. Indeed, if we denote

the parameters after t updates as θt, wt and bt and the index of the example

updated at time t as lt, we then have

ylt fθt+1
(xlt) = ylt fθt

(xlt) + ‖xlt‖2 + 1︸ ︷︷ ︸
>0

.

The training is stopped when all examples are well classified, or according to

some other criterion (such as the error on a separate validation set) if the

classes are not linearly separable. It has been shown by Novikoff (1962) that

this algorithm converges toward a solution which separates classes, if the classes

are linearly separable.

Φ-Machines

A linear classifier such as the Perceptron algorithm usually performs poorly

in real life problems, where classes are rarely linearly separable with respect

to available inputs. To overcome this problem, Φ-Machines were introduced

very early in machine learning (see Nilsson, 1965). The idea of Φ-Machines, as

REF A. B. J. Novikoff. On convergence proofs on perceptrons. In Polytechnic Institute

of Brooklyn, editor, Proceedings of the Symposium on the Mathematical Theory of Automata,

volume 12, pages 615–622, 1962.

REF N. J. Nilsson. Learning Machines. McGraw-Hill, 1965.
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Figure 3.2. Mapping the input space into a larger space may facilitate the

separation of the classes. In this example, the mapping function from R2 into

R3 was Φ(x) = Φ(x1, x2) = (x2
1,
√

2x1 x2 , x
2
2). With this mapping, the circles

(red) and the crosses (blue), which are not linearly separable in R2, become

linearly separable in R3.

suggested in Figure 3.2, is to first send the input vectors into another space (the

feature space), usually larger than the initial space. This is strongly motivated

by Theorem 3.1, introduced by Cover (1965) which relates the capacity of a

Perceptron to the dimension of the data. As the capacity in classification is

(according to Definition 2.3) also related to the largest number of examples that

a set of functions can separate, one might think that in a higher dimensional

space the classes may be more linearly separable.

Theorem 3.1 (Cover) The set of hyperplanes in dimension d

{x 7→ w · x + b, w ∈ Rd, b ∈ R }

has a capacity of d+ 1.

Thus, after choosing an arbitrary Φ function, we apply the Perceptron al-

gorithm on examples (Φ(xl), yl) instead of (xl, yl). Hence, the Perceptron

model (3.3) becomes

fθ(x) = w · Φ(x) + b . (3.4)

Multi Layer Perceptrons

Even with its Φ-Machine extension, the Perceptron algorithm is limited in

practice, because the choice of Φ is completely arbitrary. In order to enlarge

REF T. M. Cover. Geometrical and statistical properties of systems of linear inequalities

with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14:

326–334, 1965.
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First Hidden Layer Second Hidden Layer Output Layer

OutputsInputs

Figure 3.3. Description of a Multi Layer Perceptron. Gray circles represent

Perceptrons. Gray squares represent transfer functions.

separation capabilities, one can combine several Perceptrons in a non-linear

way. This is what a Multi Layer Perceptron (MLP) does.

Description

As described in Figure 3.3, an MLP is a kind of function structured in several

layers, which are applied in a feed-forward manner. Each layer contains sev-

eral Perceptrons (the units), and their output is passed through a non-linear

function, usually called a transfer function. This is usually a sigmoid function

z 7→ 1
1 + exp(−z)

,

or a hyperbolic tangent function. The last layer of the MLP is also called

the output layer, and other layers are called hidden layers. In the case of

our regression problem, the output layer contains as many Perceptrons as the

dimension of the target vectors y ∈ Rn to predict. The transfer function in the

last layer is often removed, to be able to approximate any kind of function. In

the case of our two-class classification problem, the output layer contains only

one Perceptron. The transfer function in the output layer may be removed as

well, but it is not necessary. For simplicity, we will consider only the case of

MLPs with one hidden layer, because they are easier to tune than MLPs with

more than one hidden layer, and also because it has been shown by Hornik

et al. (1989) that they are universal approximators (which means that given

a finite number of training examples xi and a target function g, there exists

REF K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2:359–366, 1989.
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an MLP fθ that can approximate g as close as desired, for all xi). Moreover,

we will focus only on MLPs for classification in this thesis. The MLP that we

consider can thus be rewritten as

fθ(x) = w · Φ(x) + b , (3.5)

where Φ(·) = (Φ1(·), Φ2(·), . . . , ΦN (·)) represents the hidden layer composed

of N hidden units. The n-th hidden unit is described as

Φn(x) = h(vn · x + an) , (3.6)

where h is a transfer function, and (vn, an) ∈ Rd × R are the parameters of

the hidden unit n to train. Note that with this notation, an MLP looks like

a Φ-Machine (3.4) where the feature space (represented by Φ) is trained. If

we consider Φ as fixed, we thus recover the Φ-Machine model. Moreover, if we

consider Φ(x) = x, we obtain the Perceptron model.

Training

The training of MLPs is usually achieved with the optimization of a given

criterion ((x, y), fθ) 7→ Q((x, y), fθ) over the training set. It leads to the

minimization of the empirical risk

RL : fθ →
1
L

L∑
l=1

Q((xl, yl), fθ) , (3.7)

using a gradient based learning method .

Criteria

As gradient based methods are used for training MLPs, we need to use deriv-

able criteria. The most often used criterion, which can be applied both for

classification and regression, is probably the Mean Squared Error (MSE) crite-

rion

Q((x, y), fθ) =
1
2
‖y − fθ(x)‖2 . (3.8)

We already highlighted in Chapter 2 that the minimum of the expected risk

using the MSE criterion is the condition expectation E(y|x), which motivates

its usage. It is also possible to show that from a likelihood perspective, the

MSE criterion is equivalent to maximizing the likelihood under the hypothesis

that the observations yl are generated from a smooth function with added noise

ξ following a Gaussian distribution N (0, 1):

yl ∼ fθ(xl) + ξ . (3.9)
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Indeed, let us consider the log-likelihood over the training set

logL(θ) = log

(
L∏

l=1

Pθ(yl|xl)

)
=

L∑
l=1

log Pθ(yl|xl) , (3.10)

where Pθ(yl|xl) is the conditional distribution of yl knowing xl. Then, if yl is

generated according to the distribution (3.9), we get

Pθ(yl|xl) =
1√
2π

exp(−1
2
‖yl − fθ(xl)‖2)

and thus the log-likelihood can be rewritten as

logL(θ) = −1
2

log(2π)− 1
2

L∑
l=1

‖yl − fθ(xl)‖2 . (3.11)

Hence, maximizing the log-likelihood (3.11) is completely equivalent to the min-

imization of the empirical risk (3.7) using the MSE criterion (3.8). Therefore,

for classification problems the MSE criterion may not be appropriate, since yl

is a binary variable, which does not fit the Gaussian model (3.9). One could

consider instead (see Bishop, 1995) yl coming from a Bernoulli distribution:

Pθ(yl|xl) =

{
1

1+exp(−fθ(xl))
if yl = 1

1− 1
1+exp(−fθ(xl))

if yl = −1 ,
(3.12)

where we add a sigmoid at the output fθ of the MLP to guarantee that output

values lie between 0 and 1. By noticing that (3.12) can be rewritten as

Pθ(yl|xl) =
1

1 + exp(−yl fθ(xl))
,

it becomes straightforward to compute the log-likelihood (3.10)

logL(θ) = −
L∑

l=1

log(1 + exp(−yl fθ(xl))) .

This leads to another criterion for classification problems

Q((x, y), fθ) = log(1 + exp(−y fθ(x))) , (3.13)

that is often called the Cross-Entropy (CE) criterion, first introduced by Hopfield

(1987).

REF C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

REF J. J. Hopfield. Learning algorithms and probability distributions in feed-forward and

feed-back networks. In Proceedings of the National Academy of Sciences, volume 84, pages

8429–8433, 1987.
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Relevance of the MSE and CE Criteria for Classification

We have shown that the MSE and CE criteria are equivalent to maximiz-

ing a likelihood over the training set. Hence, following the theory developed

by Vapnik (1995), if we had an infinite number of training examples the “em-

pirical” posterior probability Pθ(y|x) which maximizes the likelihood (3.10)

would be equal to the true posterior probability P(y|x). Moreover, it is easy

to show (as demonstrated by Duda and Hart, 1973) that taking the decision

y which maximizes P(y|x) leads to the minimum possible classification error

rate. The use of the MSE and CE criteria for classification is therefore justified.

Gradient Descent

A gradient-based learning method (first introduced by Cauchy, 1847) is used

to minimize the empirical risk over the training set (3.7). Many gradient-

based techniques exist (see Battiti, 1992), and usually rely on a local Taylor

approximation of the empirical risk around the current vector of parameters θt ,

RL(fθ) = RL(fθt
) + (θ − θt) ·

∂RL(fθt
)

∂θ
+ (θ − θt)T ∂

2RL(fθt
)

∂θ2
(θ − θt) + . . . .

(3.14)

The most popular technique remains the gradient descent also called steepest

gradient descent . It was first applied to MLPs by LeCun (1985) and Rumelhart

et al. (1986), and is known as the back-propagation technique, because the cri-

terion error is efficiently “back-propagated” through the MLP, using chained

derivatives. Gradient descent is a first order technique, which means it consid-

ers only the gradient term ∂RL

∂θ in the Taylor approximation (3.14). In other

words, the empirical risk is locally approximated as a line, with respect to the

parameters θ. Under this assumption, the best we can do to reduce RL, is to

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.

REF R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley & Sons,

New York, 1973.

REF A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées.

In Compte Rendu Hebdomadaire des Séances de l’Académie des Sciences, volume 25, pages

536–538, Paris, France, 1847.

REF R. Battiti. First and second-order methods for learning: Between steepest descent and

Newton’s method. Neural Computation, 4(2):141–166, 1992.

REF Y. LeCun. A learning scheme for asymmetric threshold networks. In Proceedings of

Cognitiva 85, pages 599–604, Paris, France, 1985.

REF D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-

tions by back-propagating errors. In D.E. Rumelhart and J. L. McClelland, editors, Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, volume 1, pages

318–362. MIT Press, 1986.
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use the rule

θt+1 ← θt − λt
∂RL(θt)
∂θ

(3.15)

to update the parameters, where λt is a learning rate (fixed or depending on

the number of updates t) that has to be tuned with a trial-and-error process.

Learning methods using the update rule (3.15) are referred as batch methods,

since an entire “batch” of the training set must be considered before updating

the parameters. However, when using large training sets, a lot of redundancies

appear in the data. Hence, as highlighted by Bottou (1991b), it is in practice

much more efficient to estimate the gradient after considering only one training

example, and thus to use the update rule

θt+1 ← θt − λt
∂Q((xl, yl), fθt

)
∂θ

, (3.16)

for all examples (xl, yl). We refer as iteration or epoch the application of

this rule over the whole training set. This method is called stochastic gradient

descent, and was first introduced by Robbins and Monro (1951). This is the

method we will consider, as we are considering large databases in this thesis.

Convergence of Stochastic Gradient Descent

The convergence of stochastic gradient descent has been well studied in a gen-

eral way by Bottou (1991a), who also proposed extended results in (Bottou,

1998). The main theorem he expresses (see Theorem 3.2) proves the conver-

gence of stochastic gradient descent under several assumptions while consider-

ing the general update

θt+1 ← θt − λtGθ(xl, yl) , (3.17)

instead of the update (3.16).

Theorem 3.2 (Bottou) Given any distribution P (x, y), we define the risk

over all training examples

R(f) = E [Q((x, y), f) ] =
∫
Q((x, y), f)P (x, y) d(x, y) .

REF L. Bottou. Une Approche Théorique de l’Apprentissage Connexioniste; Applications

à la reconnaissance de la Parole. PhD thesis, Université de Paris Sud, Orsay, 1991b.

REF H. Robbins and S. Monro. A stochastic approximation method. In Annals of Mathe-

matical Statistics, volume 22, pages 400–407, 1951.

REF L. Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-

Nı̂mes 91, Nimes, France, 1991a. EC2.

REF L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.
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We suppose R(fθ) is differentiable with respect to θ up to the third order. If

the following assertions are true (where ‖ · ‖2 is the Euclidean norm),

i) ∃Rmin, ∀θ, Rmin < R(fθ)

ii) E [Gθ(x, y) ] =
∂R(fθ)
∂θ

iii)
∞∑

t=0

λt =∞,
∞∑

t=0

λ2
t <∞

iv) ∃A, B, ∀θ, E
[
‖Gθ(x, y)‖22

]
< A+B ‖θ‖22

v) ∃D, inf
‖θ‖2>D

θ · R(fθ)
∂θ

> 0

vi) ∃E > D, ∃K, ∀θ, sup
‖θ‖2>E

‖Gθ(x, y)‖2 ≤ K

then R(fθt
) converges with probability 1 and ∂R(fθt

)/∂θ converges to 0 with

probability 1 when t→∞.

Assertion i) ensures the existence of a minimum. Assertion ii) assumes we are

performing gradient descent on the expected risk. Assertion iii) is a common

schedule of the learning rate. It imposes the choice of a decreasing learning

rate. Assertion iv) guarantees that the update term in (3.17) does not grow

more than linearly with the size of the parameters. Assertion v) prevents the

gradient descent from getting stuck in a plateau, where the parameter vector

θ may grow indefinitely without escaping. Note that it is possible to show (see

Bottou, 1998) that assertion v) ensures a global confinement of the parameters.

In other words, θ will be confined to a bounded region containing the origin.

Assertion vi) ensures that for a small norm of θ, the gradient is bounded

regardless of any example (x, y).

When the criterion

θ 7→ Q((x, y), fθ)

is differentiable and has an integrable gradient, it is straightforward to prove

that assertion ii) is satisfied for the update (3.16) using Lebesgue’s dominated

convergence theorem to swap the integration and differentiation operators. As-

sertion iv) can be verified with few derivations, for all models using stochastic

gradient descent presented in this thesis. However, assertion v) is not true in

general. In particular, it is not satisfied when using an MLP with a hyperbolic

tangent transfer function in the hidden units (3.6). As pointed out by Bottou

REF L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

REF L. Bottou. Une Approche Théorique de l’Apprentissage Connexioniste; Applications

à la reconnaissance de la Parole. PhD thesis, Université de Paris Sud, Orsay, 1991b.
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(1991b), we could instead use the slanted hyperbolic tangent

z 7→ tanh(z) + ε z ,

to guarantee the validity of assertion v) (where ε is an arbitrarily chosen real

value). Nevertheless, it seems that this does not have any impact in practice, as

long as the parameters of the model are initialized correctly (see LeCun et al.,

1998).

Note that Theorem 3.2 proves the convergence of the stochastic gradient

descent to an extremal point. This includes local and global minima, but also

local maxima, saddle points and plateaus. According to Bottou (1998) sad-

dle points and local maxima are usually unstable solutions, and plateaus are

prevented with assertion v).

Also note that this theorem proves the convergence of stochastic gradient

descent using the expected risk in the case of an infinite number of training

examples. However, if we consider a finite number of training examples L, we

can apply the theorem with the particular “counting” distribution

dP (x, y) =
1
L

L∑
l=1

δ(x, y)−(xl, yl) ,

where δ is the Dirac distribution. Then, Theorem 3.2 proves the convergence

of stochastic gradient descent to an extremal point of the empirical risk.

Mixtures of Experts

Mixtures of Experts (MoEs), first introduced by Jacobs et al. (1991), rep-

resent a function fθ as a combination of simpler functions which are called

experts. More formally, given an input example x, the following decomposition

with K experts is built:

fθ(x) =
K∑

k=1

gθ,k(x) fθ,k(x) , (3.18)

with the conditions
K∑

k=1

gθ,k = 1 and gθ,k ≥ 0 ∀k . (3.19)

REF Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In G.B. Orr

and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

REF L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

REF R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixture of local

experts. Neural Computation, 3(1):79–87, 1991.
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The function fθ,k is the output of the k-expert, and gθ(·) = {gθ,1(·), . . . , gθ,K(·)}
is the gater , which provides a real weight for each expert, given an input x. The

conditions (3.19) on the gater can be easily achieved using a soft-max function:

given any outputs {g̃θ,1(·), . . . , g̃θ,K(·)}, the outputs

gθ,k(·) =
exp(g̃θ,k(·))∑K

j=1 exp(g̃θ,j(·))

satisfy the required conditions.

The experts and the gater could be any machine learning algorithm. The

underlying idea of MoEs is that if the function to approximate is complex

but can be easily decomposed into several simpler functions, each acting on

a different input subspace, then MoEs should be more appropriate, and the

training of such models should be easier.

Training

The training of MoEs completely depends on the nature of the experts and the

gater. For example, with MLP-experts and MLP-gater, we could use gradient

descent, as for the training of MLPs. In the case of probabilistic models, it is

also possible to use the Expectation-Maximization training algorithm (see for

example Jordan and Jacobs, 1994).

Support Vector Machines

Support Vector Machines (SVMs) were first invoked by Vapnik and Lerner

(1963) as a large margin linear classifier. Step by step, they were improved

and extended to the non-linear case until the algorithm proposed in Cortes

and Vapnik (1995). The same year, an extension for regression problems was

proposed by Vapnik (1995). We introduce these algorithms in a chronological

way in this section.

Classification

SVMs were originally a kind of linear classifier. We thus define the model as

fθ(x) = w · x + b . (3.20)

REF M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.

Neural Computation, 6(2):181–214, 1994.

REF V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.

Automation and Remote Control, 24, 1963.

REF C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

1995.

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.
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(a) (b)

Figure 3.4. Two hyperplanes for separating crosses (blue) and circles (red).

(a) Hyperplane with a small margin. (b) Hyperplane with a large margin. The

margin is the distance between the two dashed hyperplanes.

However, SVMs not only aim at separating two classes (as does the Perceptron

algorithm, for example) but also at maximizing the margin between these two

classes, as depicted in Figure 3.4. The intuitive idea is that a hyperplane with

a large margin should be more resistant to noise than a hyperplane with a

small margin. SVMs are thus often referred as large margin classifiers. More

formally, we first define (strict) separating constraints of the classes as

∀l

{
w · xl + b ≥ γ if yl = 1

w · xl + b ≤ −γ if yl = −1 ,

where γ > 0 is an arbitrary real, which can be chosen equal to 1, with a possible

rescaling of w and b. For convenience sake, we thus rewrite the constraints as

∀l, yl (w · xl + b) ≥ 1 . (3.21)

We then define the margin ρ as the distance between the hyperplane fθ(x) = 1

and the hyperplane fθ(x) = −1. The margin can be easily computed as

ρ =
2
‖w‖

. (3.22)

Hence, the SVM algorithm has to maximize the margin (3.22) while respecting

the constraints (3.21). Unfortunately this first version of SVMs (introduced

initially by Vapnik and Lerner, 1963) cannot deal with non-linearly separable

classes. Two ideas were introduced to overcome this problem. First, similarly

to Φ-Machines, SVMs deal with examples (Φ(xl), yl) (given an arbitrary Φ

REF V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.

Automation and Remote Control, 24, 1963.
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function) instead of dealing with examples (xl, yl). Hence, we redefine the

SVM model as

fθ(x) = w · Φ(x) + b . (3.23)

Moreover, using the formulation suggested by Smith (1968), the constraints (3.21)

are relaxed as the following soft constraints

∀l, yl (w · Φ(xl) + b) ≥ 1− ξl
∀l, ξl ≥ 0 ,

(3.24)

where the slack variables ξl have to be minimized. This leads to the minimiza-

tion of

J : (w, b, ξ) 7→ µ

2
‖w‖2 +

1
L

L∑
l=1

ξl (3.25)

under the constraints (3.24). Note that the minimization of the first term

corresponds to the maximization of the margin (3.22) in the feature space gen-

erated by Φ. The hyper-parameter µ has to be tuned, and controls the trade-off

between the size of the margin, and the sum of margin errors (corresponding

to examples which do not respect constraints (3.24)).

About the Notation

Note that in this thesis we are not using the “standard” SVM notation which

considers

J : (w, b, ξ) 7→ 1
2
‖w‖2 + C

L∑
l=1

ξl

instead of (3.25). The relation between these two notations is easily given with

C =
1
µL

.

Moreover, the Lagrange multipliers α defined below have to be divided by µ to

retrieve the standard ones. We prefer the “µ” notation instead of the “C” one,

because it unifies MLP and SVM notations and facilitates the establishment of

links between these models, as shown in Chapter 8.

REF F. W. Smith. Pattern classifier design by linear programming. IEEE Transactions on

Computers, C-17(4):367–372, 1968.
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Minimization of a Quadratic Function Under Constraints

The minimization of (3.25) under the constraints (3.24) is achieved by using a

classical Lagrangian method. We first introduce the Lagrangian

L(w, b, ξ, α, ν) =

J(w, b, ξ) +
L∑

l=1

αl[1− ξl − yl (w · Φ(xl) + b)]−
L∑

l=1

νl ξl , (3.26)

with

∀l
αl ≥ 0

νl ≥ 0 .
(3.27)

The variables α and ν are called Lagrange multipliers. As (3.25) is a con-

vex minimization problem with convex constraints (3.24), we know from La-

grangian theory (see Appendix A for an introduction, or Ciarlet, 1990) that

if (w?, b?, ξ?) is a minimum of (3.25) under the constraints (3.24) then there

exists a saddle point ((w?, b?, ξ?), (α?, ν?)) of the Lagrangian (3.26). In other

words, (w?, b?, ξ?) has to be a minimum of

(w, b, ξ) 7→ L(w, b, ξ, α?, ν?) ,

and (α?, ν?) has to be a maximum of

(α, ν) 7→ L(w?, b?, ξ?, α, ν) .

We thus first look for minima of the Lagrangian with respect to (w, b, ξ):

∀l



∂L

∂w
= 0 ⇔ w =

1
µ

L∑
l=1

αl yl Φ(xl)

∂L

∂b
= 0 ⇔

L∑
l=1

αl yl = 0

∂L

∂ξ
= 0 ⇔ 1

L
− αl − νl = 0 .

(3.28)

Note also that looking for maxima with respect to (α, ν) gives us

∀l

αl [1− ξl − yl (w · Φ(xl) + b)] = 0

νl ξl = 0 .
(3.29)

REF P. G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation.

Masson, 1990.
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Equations (3.27), (3.28) and (3.29) are often referred as the Karush-Kuhn and

Tucker (KKT) conditions (Introduced by Karush, 1939 and Kuhn and Tucker,

1951. See Appendix A for details). Substituting equation (3.28) into the La-

grangian (3.26) leads to the maximization of

α 7→
L∑

l=1

αl −
1

2µ

L∑
l=1

L∑
m=1

yl ym αl αm Φ(xl) · Φ(xm) ,

under the constraints (3.28).

The SVM Problem

The SVM problem is therefore equivalent to the minimization of

α 7→ 1
2µ

L∑
l=1

L∑
m=1

yl ym αl αm Φ(xl) · Φ(xm)−
L∑

l=1

αl , (3.30)

under the constraints
L∑

l=1

αl yl = 0

∀l 0 ≤ αl ≤
1
L
.

(3.31)

The weight w is then given by

w =
1
µ

L∑
l=1

yl αl Φ(xl) , (3.32)

and b is given using conditions (3.29). Indeed, after considering all KKT con-

ditions, it is easy to see that if 0 < αl < 1/L, then ξl = 0 and thus

1− yl (w · Φ(xl) + b) = 0 .

Note that the examples (xl, yl) such that the corresponding αl are non-zero are

called support vectors, because they are the only training examples necessary

to define the separating hyperplane in (3.32). Using KKT conditions, it is also

possible to see when an example is a support vector, as shown in Figure 3.5.

This happens only if the example is on the margin, or if it does not respect

the separation conditions (3.21) (in this latter case, the support vector is said

to be at bound, because in that case αl = 1/L is the maximum allowed by

constraints (3.31)). Hence SVMs are said to perform a sparse representation

of the training data. Finally, it is worth mentioning that the SVM solution is

REF W. Karush. Minima of functions of several variables with inequalities as side con-

straints. Department of Mathematics. University of Chicago, 1939.

REF H. W. Kuhn and A. W. Tucker. Non-linear programming. In Proceedings 2nd Berke-

ley Symposium on Mathematical Statistics and Probability, pages 481–492, Berkeley, 1951.

University of California Press.
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αl = 0

αl = 1
L

0 ≤ αl ≤ 1
L

Figure 3.5. Description of the separating hyperplane in the feature space,

for classification SVMs. Support vectors are the examples corresponding to

non-zero αl.

usually unique (due to the convex minimization problem), except in some rare

pathological cases, described in Burges and Crisp (2001).

Optimization

The minimization of the quadratic problem (3.30) under constraints (3.31) is

usually achieved with a kind of gradient descent technique under constraints,

such as the algorithm proposed by Platt (1999a), or the improved algorithm

proposed by Joachims (1999). We will talk about this optimization problem

in Chapter 5.

REF C. Burges and D. Crisp. Uniqueness of the SVM solution. In S. A. Solla, T. K. Leen,

and K. R. Müller, editors, Advances in Neural Information Processing Systems, volume 12,

pages 223–229. MIT Press, 2001.

REF J. C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods.

The MIT Press, 1999a.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.
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y

x

ε

ε

Figure 3.6. SVMs in regression try to fit the training set (red circles) into

a tube of width 2 ε.

Regression

An extension of SVMs for regression problems has been proposed by Vapnik

(1995). It considers real target values yl ∈ R. The idea is to find a hyperplane

fθ(x) = w · x + b ,

such that the norm ‖w‖ is minimized while the training examples (xl, yl) lie

inside a “tube” of width 2 ε around this hyperplane, for a given ε > 0, as

depicted in Figure 3.6. More formally, we want

∀l
(w · xl + b)− yl ≤ ε

yl − (w · xl + b) ≤ ε .
(3.33)

The minimization of the norm ‖w‖ is justified as a regularization parameter,

following the idea of ridge regression introduced by Hoerl and Kennard (1970).

The same techniques used for SVMs in classification are applied for the re-

gression case: instead of dealing with examples (xl, yl), we consider examples

(Φ(xl), yl) for an arbitrarily chosen Φ function. Moreover, as it is usually not

possible to respect the constraints (3.33) we relax them as

∀l

 (w · Φ(xl) + b)− yl ≤ ε+ ξl

yl − (w · Φ(xl) + b) ≤ ε+ ξ∗l ,
(3.34)

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.

REF A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal

problems. Technometrics, 12:55–67, 1970.
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where the non-negative slack variables ξ ∈ RL
+ and ξ∗ ∈ RL

+ have to be mini-

mized. This leads to the minimization of

(w, b, ξ, ξ∗) 7→ µ

2
‖w‖2 +

1
L

L∑
l=1

(ξl + ξ∗l ) ,

under the constraints (3.34).

The SVM Regression Problem

As for the classification case, introducing Lagrangian variables α and α∗ cor-

responding to constraints (3.34), leads us to the minimization of

(α, α∗) 7→ 1
2µ

L∑
l=1

L∑
m=1

(α∗l − αl) (α∗m − αm)Φ(xl) · Φ(xm)

−
L∑

l=1

yl (α∗l − αl) + ε
L∑

l=1

(α∗l + αl) , (3.35)

with α ∈ RL, α∗ ∈ RL and under the constraints

L∑
l=1

(αl − α∗l ) = 0

∀l 0 ≤ αl, α
∗
l ≤

1
L
.

(3.36)

The weight w is then obtained with

w =
1
µ

L∑
l=1

(α∗l − αl)Φ(xl) ,

and b is given using the equations

(w · Φ(xl) + b)− yl − ε = 0 when 0 < αl <
1
L

yl − (w · Φ(xl) + b)− ε = 0 when 0 < α∗l <
1
L
.

The SVM regression problem has similar properties to the classification one. In

particular, it is easy to see with KKT conditions that for all examples (xl, yl)

the corresponding Lagrange variables satisfy αl α
∗
l = 0 . Therefore, all examples

which have one non zero Lagrange variable are called “support vectors” as well.

Once again, it appears that SVMs are performing a sparse representation of

the training set. As for classification, the optimization of such a quadratic

problem can be achieved by a gradient descent algorithm under constraints,
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such as the algorithm proposed by Smola and Schölkopf (1998) and the one

proposed by Flake and Lawrence (2002). We will discuss this in Chapter 5.

Kernels

A kernel is function of two variables which defines an inner product in a

(possibly unknown) feature space. More precisely, if k(·, ·) is a kernel, there

exists a function Φ such that

∀x1, x2 k(x1, x2) = Φ(x1) · Φ(x2) . (3.37)

Kernel functions were introduced a long time ago by Mercer (1909), who pro-

posed Theorem 3.3, which characterizes functions which are kernels.

Theorem 3.3 (Mercer) Let us consider a compact subset C of Rn, and a

continuous symmetric function in L2(C × C)

k : C × C → R .

To guarantee that k has an expansion

k(x1, x2) =
∞∑

k=1

ak Ψk(x1) ·Ψk(x2) ,

with positive coefficients ak > 0 (which is equivalent, from the Hilbert-Schmidt

theory to say that k(·, ·) describes an inner product in some feature space), it

is necessary and sufficient that the condition∫
C

∫
C
k(x1, x2) g(x1) g(x2) dx1 dx2 ≥ 0

is valid for all functions g ∈ L2(C).

The main interest of kernels is that they could replace a computationally ex-

pensive inner product Φ(x1) · Φ(x2) (if Φ maps the input data in a very high

dimensional space) by a simpler function evaluation k(x1, x2).

REF A. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report

NeuroCOLT NC-TR-98-030, Royal Holloway College, University of London, 1998.

REF G. W. Flake and S. Lawrence. Efficient SVM regression training with SMO. Machine

Learning, 46(1–3):271–290, 2002.

REF J. Mercer. Functions of positive and negative type and their connection with the theory

of integral equations. Philosophical Transactions of the Royal Society, A 209:415–446, 1909.
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Examples

The two most used kernels (see Vapnik, 1995) are the Gaussian (or Radial Basis

Function, RBF) kernel

k(x1, x2) = exp(−‖x1 − x2‖2/(2σ2)) , (3.38)

where σ ∈ R+
? , and the polynomial kernel

k(x1, x2) = (1 + x1 · x2)p , (3.39)

where p is a positive integer. Note that many more kernels exist. For example,

techniques to “construct” kernels are proposed by Cristianini and Shawe-Taylor

(2000). It is also worth mentioning that the function

k(x1, x2) = tanh(a+ x1 · x2) ,

with a ∈ R, is often referred as a kernel, which is wrong, as demonstrated

by Smola et al. (2001).

Kernel Algorithms

Since the very beginning of machine learning, kernels have been used in learn-

ing algorithms, as for example in the Potential Function Classifier (Aiserman

et al., 1966). Kernels then gained a lot of popularity with their introduction

into the SVM algorithm by Boser et al. (1992), who pointed out that inner prod-

ucts Φ(xl) · Φ(xm) in the SVM problem (3.30) could be replaced by kernels.

Moreover, using (3.32) allows us to rewrite the SVM decision function (3.23)

as
fθ(x) = w · Φ(x) + b

= b+
L∑

l=1

αl yl Φ(xl) · Φ(x)

= b+
L∑

l=1

αl yl k(xl, x) .

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.

REF N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.

Cambridge University Press, 2000.

REF A. J. Smola, Z. L. Óvári, and R. C. Williamson. Regularization with dot-product ker-

nels. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information

Processing Systems, volume 13, pages 308–314. MIT Press, 2001.

REF M. A. Aiserman, E. M. Braverman, and L. I. Rozonoer. Potential functions technique

and extrapolation in learning system theory. In Proceedings of I.F.A.C., 1966.

REF B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning

Theory, pages 144–152, Pittsburgh, PA, 1992. ACM Press.
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Thus, it is possible with SVMs to map input data in an arbitrary feature

space using kernels, without knowing explicitly the mapping function Φ. Af-

ter the success of kernels for SVMs, many algorithms were “kernelized”, such

as the Perceptron (Freund and Schapire, 1999), Principal Component Analy-

sis (Schölkopf et al., 1998), Fisher Discriminant Analysis (Mika et al., 1999),

Projection Pursuit (Vincent and Bengio, 2002) and Independent Component

Analysis (Bach and Jordan, 2002).

Capacity Control and Regularization

In Chapter 2, we highlighted the importance of controlling the capacity

(VC-dimension) of a machine learning algorithm, in order to be able to control

its ability to generalize. We also mentioned the existence of ill-posed problems,

which can be solved with the introduction of a regularization parameter. We

thus present in this section techniques for capacity control and regularization,

for the models we presented above.

Perceptrons and MLPs

Capacity

Cover (1965) presented Theorem 3.1 which proves that the capacity of a set of

hyperplanes (and thus Perceptrons and their Φ-Machine extension) is related

to the dimension of the input data. Thus, at a first glance, it is not possible to

tune the capacity of Perceptrons, and if we are dealing with high dimensional

data, good generalization cannot be guaranteed, according to Vapnik bounds

introduced in Chapter 2. (This is often referred as the curse of dimensionality).

REF Y. Freund and R. E. Schapire. Large margin classification using the perceptron algo-

rithm. Machine Learning, 37(3):277–296, 1999.

REF B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

REF S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher discriminant

analysis with kernels. In Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural

Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

REF P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning, 48(1):165–187,

2002.

REF F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of

Machine Learning Research, 3:1–48, 2002.

REF T. M. Cover. Geometrical and statistical properties of systems of linear inequalities

with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14:

326–334, 1965.



Capacity Control and Regularization 39

It was also demonstrated recently by Karpinski and Macintyre (1995) that the

capacity of a set of MLPs with sigmoid transfer functions is approximately

quadratic with respect to the number of weights of the model. One way to

control the capacity of an MLP is thus tuning the number of hidden units.

However, as for the Perceptron, the capacity of MLPs depends on the dimension

of the data (because the number of weights depends on it as well). Thus,

once again good generalization cannot be guaranteed when dealing with high

dimensional data.

Regularization

Even with the control of the number of hidden units, regularization of MLPs

(or Perceptrons) is also usually employed in order to reduce over-fitting prob-

lems. Two methods were introduced early in the history of MLPs by Plaut

et al. (1986) and are still used: either early stopping is performed (that is, the

training process is stopped before reaching a local optimum, in order to control

the value of the parameters) or regularization terms over the parameters of the

model are added in the empirical risk (3.7). Regularization terms (also called

weight decays) are usually of the form of

µ

2
‖θ‖2 ,

where θ represents the parameters of the MLP, and µ ∈ R+ is the weight

decay parameter, which controls the trade-off between the regularization and

the minimization of the original empirical risk.

SVMs

As SVMs are a kind a linear classifier in the feature space generated by the

Φ function in (3.23), their capacity should be related to the dimension of the

feature space, following Theorem 3.1. This is particularly annoying, because

as we pointed out before, one idea of SVMs (as Φ-Machines) is to map data to

a higher dimensional space. In particular, it has been shown (see for example

REF M. Karpinski and A. Macintyre. Polynomial bounds for vc dimension of sigmoidal neu-

ral networks. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing,

pages 200–208, 1995.

REF D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back prop-

agation. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Computer Science

Department, 1986.

REF C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining

Knowledge Discovery, 2(2):121–167, 1998.
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Burges, 1998) that a Gaussian kernel (3.38) maps the data in an infinite space

and a polynomial kernel (3.39) of degree p maps the data to a space of about

Cp
p+d−1

dimensions (where d is the input dimension of the data). Even though the

capacity is controlled by p, it quickly becomes high as p increases. In both

cases, the capacity is thus high and the Vapnik bounds given in Chapter 2

cannot guarantee a good generalization. What saves the SVMs in classification

is that instead of considering the set of “hyperplanes in the feature space”,

one should consider the set of “hyperplanes in the feature space with large

margins”, because SVMs also maximize the margin in the feature space. Hence,

to justify the use of SVMs, Vapnik (1995) proposed considering the set of γ-

margin hyperplanes

{x 7→ ŵ · x + b̂, ŵ ∈ Rd, b̂ ∈ R, ‖ŵ‖ = 1 } ,

which satisfy

∀l yl (ŵ · xl + b̂) ≥ γ .

It is easy to see that every γ-margin hyperplane corresponds to one hyper-

plane (3.20) under the constraints (3.21), by taking γ = 1
‖w‖ . Then Theo-

rem 3.4 can be given.

Theorem 3.4 (Vapnik) Suppose the input vectors belong to a sphere of ra-

dius r in Rd. Then the set of γ-margin separating hyperplanes has a capacity

h which satisfies the inequality

h ≤ min
(
r2

γ2
, d

)
+ 1 .

Therefore, large margin separating hyperplanes ensure a low capacity even

in a high dimensional space, and thus a good accuracy of the generalization

bounds given in Chapter 2. Note that the capacity can be controlled with the

hyper-parameter µ in (3.25) which controls the trade-off between the size of

the margin, and the number of margin errors of the SVM.

About Other Algorithms

In this thesis we will focus only on the algorithms presented in this chapter.

We will consider them under the light of large scale machine learning problems,

and we will propose some analysis and some improvements in the framework

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.
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of this particular context. Obviously, in half a century of machine learning,

many other algorithms have been proposed, but we will not consider them in

this thesis for evident lack of time and space reasons. We will thus not talk

about popular algorithms such as trees (see for instance CART (Breiman et al.,

1984), ID3 (Quinlan, 1986), C4.5 (Quinlan and Rivest, 1989)), boosting (see for

instance Adaboost (Freund and Schapire, 1996), Marginboost (Mason et al.,

1999), Logitboost (Friedman et al., 2000)) which could also have an interest

for dealing with large scale problems.

Summary

We presented in these chapter several algorithms which will be employed in

this thesis. We introduced the original Perceptron algorithm and its Φ-Machine

generalization which were among the first machine learning algorithms for clas-

sification problems. We then gave an overview of Multi Layer Perceptrons

(MLPs), and the stochastic gradient descent algorithm. MLPs are powerful

models which can approximate any function, and are thus able to solve classi-

fication and regression problems. We also briefly introduced Mixtures of Ex-

perts (MoEs), which combine several arbitrary models. Finally, we presented

Support Vector Machines (SVMs) for both classification and regression prob-

lems. SVMs in classification add the idea of maximizing the margin between

the classes it separates. We also showed how to control the capacity of all

these models. It is interesting to highlight the fact that all these models map

the training data into a feature space. In the case of classification, they then

linearly separate classes in this feature space. In the case of regression, they

linearly approximate the data in the feature space. Moreover, the feature space

has to be chosen by the user for Φ-Machines and SVMs (but given this choice,

the SVM solution is unique), whereas it is trained when using MLPs (however

the MLP solution is not unique). Now that the models have been introduced,

REF L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-

sion Trees. Wadsworth International Group, Belmont, CA, 1984.

REF J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

REF J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum description

length principle. Information and Computation, 80:227–248, 1989.

REF Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Machine

Learning: Proceedings of the Thirteenth International Conference, pages 148–156, 1996.

REF L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for

combining hypotheses. In Smola, Bartlett, Schölkopf, and Schuurmans, editors, Advances in

Large Margin Classifiers, pages 61–73. MIT Press, 1999.

REF J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical

view of boosting. Annals of Statistics, 28(2):337–374, 2000.
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we will focus in the next chapter on the experimental framework considered in

this thesis.



4 Experimental Framework

Most of the work achieved in this thesis focuses on classification over large

databases. Instead of introducing these databases each time we have to perform

experiments, we describe them in this chapter. We also briefly describe the

software we used to carry out these experiments.

Torch

We developed software to ease practical comparisons between machine learn-

ing algorithms. The Torch software library is publicly available to the scientific

community at

http://www.torch.ch ,

under a free BSD license. It implements most state-of-the-art machine learning

algorithms in a unified framework (see Collobert et al., 2002c for more details).

This library greatly simplifies the process of extending algorithms or even cre-

ating new ones. Moreover, it is written in C++ in an efficient way which allows

us to deal with large databases and models. All experiments in this thesis have

been performed using Torch.

Experiments Setup

All experiments in this thesis follow the same protocol. The databases are

divided into three subsets: a training set, a validation set and a test set. The

training set is used for training the parameters of the various machine learning

algorithms we consider. The validation set is used to tune the hyper-parameters

REF R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning software

library. Technical Report IDIAP-RR 02-46, IDIAP, 2002c.
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(that is, the parameters which are external to the algorithm, and which must

be chosen by the user) of the algorithms when the goal is to maximize gen-

eralization performance. All the hyper-parameters are thus chosen according

to the classification error rate found on this subset, following the theory in-

troduced in Chapter 2. However, in some cases we desire the best training

performance instead of generalization performance. In these particular cases,

the validation set is not used and all hyper-parameters of the model are tuned

according to the training performance. Finally, the test set is employed to

compare generalization performance between several algorithms.

Pre-Processing

For all databases, we normalized each input vector x for all examples (x, y)

by subtracting the means from the input variables, and then by normalizing

to 1 the variance of each input variable. More precisely, we first computed the

mean mi of the i-th column of input vectors over the training set

mi =
1
L

L∑
l=1

xl,i .

We also computed the standard deviation σi where

σ2
i =

1
L

L∑
l=1

x2
l,i −m2

i .

We then applied the following normalization for each example (x, y) in the

database

xi ←
xi −mi

σi
.

This normalization forces the input variables to lie in the same range, and thus

to have similar influence for the algorithms we will consider. In the particular

case of Multi Layer Perceptrons, it also ensures better conditioning of the

empirical risk minimization problem, as highlighted by LeCun et al. (1998).

Forest

The Forest database is currently the largest database available on the UCI

website at

http://kdd.ics.uci.edu/databases/covertype/covertype.data.html ,

REF Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In G.B. Orr

and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.



Connect-4 45

Class 1 2 3 4 5 6 7

# Obs. 211,840 283,301 35,754 2,747 9,493 17,367 20,510

Table 4.1. Number of observations for each of the 7 classes of the Forest

database.

Class win lost draw

# Obs. 44473 16635 6449

Table 4.2. Number of observations for each of the 3 classes of the Connect-4

database.

along with a very detailed description. The database contains more than

500,000 observations. Each observation in the database corresponds to a 30×30

square meter cell of forest, represented by a 54 dimensional input vector with

10 continuous variables and 44 binary variables. The task is to determine the

type of forest in each cell. This leads to a classification task with 7 classes

distributed as given in Table 4.1. In order to have a balanced two-class classifi-

cation problem, we decided to consider instead the problem of classifying class

2 against all the other classes. After shuffling, we kept only 100,000 examples

for training, 10,000 for validation and 50,000 for testing.

Connect-4

The Connect-4 database is the second largest database available on the UCI

website at

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/connect-4 .

This database contains all legal positions after eight plays in the game of

Connect-4 (a tic-tac-toe like game, in which players drop pieces onto columns

and try to get four in a row), in which neither player has won yet, and in which

the next move is not forced. The task is to predict if the first player will win or

loose, or if the game will be a draw. This leads to a 3-class classification prob-

lem, where the distribution of the classes is given in Table 4.2. We transformed

this problem into a two-class classification problem, where the goal is to classify

class a “win” against the others. The observations in this database are repre-

sented by vectors containing 42 discrete attributes which correspond to the 42

playable positions available on the game board. Each of these attributes can

take three different values, corresponding to the state of a particular position

on the game board: either the first player has taken the position, the second
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player has taken the position, or the position is not taken yet. As these posi-

tion states “taken by player 1”, “taken by player 2” and “not taken” are not

ordered values, it is not appropriate to represent them as integer or real values.

We thus transformed each attribute as binary vectors with 3 sub-attributes:

taken by player 1 → 0, 0, 1

taken by player 2 → 0, 1, 0

not taken → 1, 0, 0 .

This leads to input vectors with 126 binary attributes. We then shuffled the

data set and took 50,000 examples for training, 7,500 for validation, and 10,000

for testing.

Summary

In this chapter, we briefly introduced the two main classification databases

we will use in this thesis: the Forest and Connect-4 UCI databases. We also

introduced the Torch software library used to perform all our experiments. In

the next chapter, we will focus on Support Vector Machines (SVMs), a re-

cent and important machine learning algorithm. In particular, having shown

in Chapter 3 that SVMs require the minimization of a quadratic problem under

constraints, we will now introduce an algorithm able to perform this minimiza-

tion on large databases.



5 Optimization for SVMs

In Chapter 3 we introduced Support Vector Machines (SVMs), a recent and

important machine learning algorithm for classification and regression proposed

by Vapnik (1995). We showed that SVM training requires the minimization of

a quadratic problem under constraints. Solving this problem using a classical

technique such as a conjugate gradient method with projection is known to cost

on the order of O(L3) in time, with respect to the number of training examples

L (see Ciarlet, 1990). With a naive implementation, it also has a memory cost

on the order of O(L2) to store the matrix of the quadratic problem. These

orders of complexity are not suited for large scale problems. Thus, we propose

in this chapter a state-of-the-art technique to train SVMs in an efficient way.

This technique is the same as the one proposed by Joachims (1999). Our

contribution extends Joachims ideas to the regression SVM problem. Though

it may seems obvious, curiously it was not the technique used to train regression

SVMs at the time we proposed this extension.

General Form of the Minimization Problem

We already introduced SVMs in Chapter 3, both for classification and re-

gression tasks. It is interesting to see that we can rewrite the SVM problem in

a more general form, at least adapted for both cases. Using the same notations

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.

REF P. G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation.

Masson, 1990.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.
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as in Chapter 3, the decision function in both cases is written as

fθ(x) = w · Φ(x) + b , (5.1)

where b is a real number, w is real vector, and Φ is an arbitrarily chosen

function. We can then consider the more general SVM minimization problem

(w, b, ξ) 7→ µ

2
‖w‖2 +

1
L

M∑
l=1

ξl , (5.2)

subject to the constraints

∀l ∈ {1 . . .M}, zl [w · φl + b ] + γl + ξl ≥ 0 (5.3)

and

ξ ≥ 0, (5.4)

where L is the number of training examples, M is the number of constraints,

µ is a regularization parameter as defined in Chapter 3. The constant real

vectors z, γ, and φl depend on the task and are defined later in this chapter.

Adapting derivations made in Chapter 3, we introduce Lagrange multipliers

α ∈ RM and η ∈ RM corresponding to constraints (5.3) and (5.4) respectively.

As the problem (5.2) is a convex problem with convex constraints, we know

(see Appendix A) that finding a minimum (w, b, ξ) of (5.2) is equivalent to

finding (w, b, ξ, α, η) which satisfies the KKT conditions rewritten here for

convenience:

w =
1
µ

M∑
l=1

αl zl φl

αT z = 0

αl [zl (w · φl + b) + γl + ξl] = 0 ∀l
1
L
− αl − ηl = 0 ∀l

ηl ξl = 0 ∀l

αl ≥ 0 ∀l

ηl ≥ 0 ∀l .

(5.5)

Using Lagrangian convex theory (see Chapter 3 and Appendix A), we also

know that α has to be a minimum of

J(α) =
1

2µ
αT K α + αT γ , (5.6)

under the constraints
αT z = 0

αmin ≤ α ≤ αmax ,
(5.7)
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where αmin = 0, αmax = 1
L

and the matrix K ∈ RM×M is defined with

Klm = zl zm φl · φm . (5.8)

Thus, after finding the minimum α of problem (5.6), we know that there exists

a couple (w b) satisfying the KKT conditions (5.5) with this α. In particular,

the weight w of the model is directly given by KKT conditions. The bias b is

found by noticing that for any l such that αmin
l < αl < αmax

l , ξl = 0 and the

following equation holds

zl (w · φl + b) + γl = 0 . (5.9)

Our main concern in this chapter is to find a minimum of (5.6) under con-

straints (5.7) in an efficient way.

Classification and Regression Tasks

We now define the constants of the general problem (5.2) for the specific case of

classification and regression tasks, according to derivations given in Chapter 3.

For classification tasks, it is obvious that the number of constraints M is equal

to the number of examples L. We have

∀l ∈ {1 . . . L} φl = Φ(xl) ,

where the function Φ is given by our model (5.1). Vectors z and γ belong to

RL and are defined as

∀l ∈ {1 . . . L}

{
zl = yl

γl = −1 .

For regression tasks, the number of constraints M is equal to 2L. If we first

perform the substitution

α← (α, α∗) (5.10)

and if we define

∀l ∈ {1 . . . 2L}, φl =

{
Φ(xl) if l ≤ L
Φ(xl−L) if l > L ,

then the SVM regression problem is equivalent to the minimization of (5.6),

where z ∈ R2L is defined as

∀l ∈ {1 . . . 2L} zl =

{
−1 if l ≤ L

1 if l > L ,

and γ ∈ R2L is given by

∀l ∈ {1 . . . 2L} γl =

{
ε+ yl if l ≤ L
ε− yl if l > L .
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A Computationally Expensive Problem

Solving the minimization problem (5.6) under constraints (5.7) needs resources

on the order of O(M3) in time and on the order of O(M2) in memory with a

classical technique such as a conjugate gradient method with projection (see

Ciarlet, 1990) and a naive implementation. In this chapter we propose a method

to efficiently solve any kind of problem which is derived from a minimization

of form (5.6) (and thus classification and regression) using a decomposition

algorithm very similar to the one proposed by Joachims (1999) in the context

of classification problems.

The Decomposition Algorithm

As in the classification algorithm proposed by Joachims (1999), which was

based on a idea from Osuna et al. (1997), our algorithm is based on a loop

subdivided into the following four steps, which are detailed later in the following

sub-sections:

1. Select q variables αl as the new working set, defined with l ∈ W.

2. Fix the other variables αl, l ∈ F to their current values and solve the

problem (5.6) with respect to αl, l ∈ W.

3. Compute the new bias b.

4. Search for variables αl whose values have been at αmin
l or αmax

l (cor-

responding to constraints (5.7)) for a long time and that will probably

not change anymore. This optional step is the shrinking phase, as these

variables are removed from the problem.

5. Test whether the optimization is finished; if not, we continue the loop by

returning to the first step.

REF P. G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation.

Masson, 1990.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.

REF E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector

machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Neural Networks for

Signal Processing VII - Proceedings of the 1997 IEEE Workshop, pages 276–285. IEEE Press,

New York, 1997.
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Selection of a New Working Set

We propose to select a new set of q variables such that the overall criterion

will be optimized. In order to select such a working set, we use the same

idea as Joachims (1999): we simply search for the optimal gradient descent

direction p which is feasible (such that there exists a ζ ∈ R+ such that α + ζ p

satisfies constraints (5.7)) and which has only q non-null components. The

indices corresponding to these components are chosen to be the new working

set W. Thus we need to minimize:

p 7→
(
∂J

∂α

)T

p , (5.11)

subject to the constraints

zTp = 0

pl ≥ 0 for l such that αl = αmin
l

pl ≤ 0 for l such that αl = αmax
l ,

(5.12)

and

−1 ≤ p ≤ 1 (5.13)

card{ pl / pl 6= 0 } = q . (5.14)

Since we are searching for an optimal descent direction (i.e. where the scalar

product with the gradient is the smallest), we want to minimize (5.11), where

the first derivative of J is easily given by
∂J

∂α
=

1
µ

Kα + γ , (5.15)

according to the definition of J given in (5.6). Conditions (5.12) are necessary

to ensure the feasibility of the obtained direction. Condition (5.13) ensures that

the problem has a solution (because a direction is still the same if we multiply

it by an arbitrary scalar). Finally, condition (5.14) is imposed because we are

searching for a direction with only q non-null components. Substituting

pl ← pl zl ,

and considering (5.15), the problem is equivalent to minimizing

p 7→
L∑

l=1

[
zl

(
1
µ

Kα + γ

)
l

]
pl (5.16)

under constraints (5.13), (5.14) and

1Tp = 0 (5.17)

zl pl ≥ 0 for l such that αl = αmin
l (5.18)

zl pl ≤ 0 for l such that αl = αmax
l . (5.19)
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This is a kind of linear programming problem, and it is known (see for example

Ciarlet, 1990) that there exists a solution where the q non-zero coordinates of

p are extreme points of the polyhedron defined by (5.17) and (5.13). If we

consider only even values of q, then the non-zero coordinates are equal to ±1

and (5.17) ensures that the number of positive direction coordinates pl = 1

is equal to the number of negative direction coordinates pl = −1. If we now

introduce a bijection ϕ from { 1 . . . L } into itself, such that the terms

zϕ(l)

[
1
µ

Kα + γ

]
ϕ(l)

in the sum (5.16) are sorted in decreasing order, then for the q/2 first indices

ϕ(l) satisfying
if zϕ(l) ≤ 0 then αmin

ϕ(l) ≤ αϕ(l) < αmax
ϕ(l)

if zϕ(l) ≥ 0 then αmin
ϕ(l) < αϕ(l) ≤ αmax

ϕ(l) ,

the direction coordinates must be negative (pϕ(l) = −1), and for the q/2 last

indices ϕ(l) satisfying

if zϕ(l) ≥ 0 then αmin
ϕ(l) ≤ αϕ(l) < αmax

ϕ(l)

if zϕ(l) ≤ 0 then αmin
ϕ(l) < αϕ(l) ≤ αmax

ϕ(l) ,

the direction coordinates must be positive (pϕ(l) = 1), according to (5.18)

and (5.19). Note that a coordinate ϕ(l) may be selected twice, in which case

we would have to lower the value of q, as the coordinates have to be distinct.

Other coordinates of p are set to zero. The resulting direction vector p is a

solution of the optimal feasible direction problem (5.16). The indices l such

that pl 6= 0 obtained with this method correspond to the new working set W.

Solving the Sub-Problem

We want now to solve problem (5.6) taking into account only the variables

αl, l ∈ W. For convenience, we consider the decomposition of all vectors in

the following manner:

α = (αW , αF) ,

where the first part corresponds to the variables belonging to the working set

W, and the second part corresponds to the variables belonging to the fixed set

F . We suppose that the variables are appropriately re-ordered. In the same

way, we also decompose the matrix K as follows:

K =

(
KWW KWF

KFW KFF

)
.

REF P. G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation.

Masson, 1990.
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Minimizing (5.6) under the constraints (5.7) with respect to variables belonging

to the working set W can then be rewritten as minimizing

JW(αW) =
1

2µ
αT
W KWW αW + αT

W

[
1
µ

KWF αF + γW

]
, (5.20)

under the constraints

αT
W zW = −αT

F zF (5.21)

αmin
W ≤ αW ≤ αmax

W , (5.22)

by noticing that KT
WF = KFW and by removing constant terms. This minimiza-

tion can be achieved using a classical constrained quadratic optimizer, such as

a conjugate gradient method with projection or an interior point method (see

Fletcher, 1987). However, if the working set size q is equal to 2, the problem can

also be solved analytically following the idea found in the Sequential Minimal

Optimization (SMO) algorithm introduced by Platt (1999a).

Enhanced SMO Algorithm

The original SMO algorithm is a kind of decomposition algorithm with a work-

ing set size equal to 2, but where the working set is chosen randomly or ac-

cording to some heuristics (see Platt, 1999a). Note that in its random version,

the SMO algorithm can be viewed as a stochastic gradient under constraints,

where the optimal learning rate is known at each step. Our algorithm is quite

better, because we also select the steepest feasible direction at each step. Note

however that Keerthi et al. (2001) also proposed some heuristic improvements

to the SMO algorithm which is equivalent (in the classification case) to the

algorithm proposed here for q = 2. Thus, we now consider the case of q = 2,

and to simplify we index variables in W by 1 and 2. In particular, we rewrite

αW as

αW = (α1, α2) ,

and with a similar notation, KWW becomes

KWW =

(
k11 k12

k21 k22

)
. (5.23)

REF R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.

REF J. C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods.

The MIT Press, 1999a.

REF S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. Murthy. Improvements to

platt’s SMO algorithm for SVM classifier design. Neural Computation, 13(3):637–649, 2001.
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We first want to find the minimum of (5.20) with respect to α1 along the line

defined by (5.21), while ignoring the constraint in (5.22). Note that (5.21)

becomes now

z1 α1 + z2 α2 = −αT
F zF ,

which is equivalent to

α2 = −z2 αT
F zF − z1z2 α1. (5.24)

Thus, finding the minimum of JW with respect to α1 along the line of (5.24)

corresponds to finding the minimum of

J̃(α1) = JW(ψ(α1)) ,

where ψ is defined as

ψ : α1 7→

(
α1

−z2 αT
F zF − z1z2 α1

)
.

As it is obvious that J̃ is quadratic with respect to α1, we obtain with a second

order Taylor expansion

J̃(α1) = J̃(αo
1) +

∂J̃(αo
1)

∂α1
(α1 − αo

1) +
1
2
∂2J̃(αo

1)
∂α2

1

(α1 − αo
1)

2 , (5.25)

where αo is the current value of α. The first and second derivatives of J̃ are

now found with a chained derivative rule. First we have

∂J̃(αo
1)

∂α1
=
(
ψ(αo

1)
∂α1

)T
∂JW(ψ(αo

1))
∂αW

,

where
∂ψ

∂α1
=

(
1

−z1z2

)
,

and
∂JW
∂αW

=
1
µ

KWW αW +
1
µ

KWF αF + γW

=
[

1
µ

Kα + γ

]
W

.

Moreover, as the second derivative of ψ is zero, we can state

∂2J̃(αo
1)

∂α2
1

=
(
ψ(αo

1)
∂α1

)T
∂2JW(ψ(αo

1))
∂α2

W

ψ(αo
1)

∂α1
,

where the second derivative of JW is equal to 1
µ KWW . A bit of algebra on this

formula yields

∂J̃(αo
1)

∂α1
=
[

1
µ

Kαo + γ

]
1

− z1z2
[

1
µ

Kαo + γ

]
2

, (5.26)
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and
∂2J̃(αo

1)
∂α2

1

=
1
µ

[ k11 − 2z1z2 k12 + k22 ] .

Defining ρ = 1
µ [ k11 − 2z1z2 k12 + k22 ], (5.25) admits a unique minimum α?

1 if

ρ > 0, given by

α?
1 = αo

1 +
z1z2

[
1
µ Kαo + γ

]
2
−
[

1
µ Kαo + γ

]
1

ρ
. (5.27)

Consider once again equation (5.24) which can be rewritten as

α1 = (αo
1 + z1z2 α

o
2)− z1z2 α2. (5.28)

Thus, if z1z2 > 0 then α1 is allowed to take values between the bounds Lα1

and Hα1 where

Lα1 = max[αmin
1 , (αo

1 + αo
2)− αmax

2 ]

Hα1 = min[αmax
1 , (αo

1 + αo
2)− αmin

2 ] .

If z1z2 < 0, then we have instead

Lα1 = max[αmin
1 , (αo

1 − αo
2) + αmin

2 ]

Hα1 = min[αmax
1 , (αo

1 − αo
2) + αmax

2 ] .

Finally, the solution of our problem (5.20) for q = 2 is given as follows:

• If ρ > 0, then
α1 = max(Lα1 , min(α?

1, Hα1))

α2 = αo
2 + z1z2 (αo

1 − α1) ,

where α?
1 is given by (5.27), and α2 is given using the relation (5.28).

• If ρ = 0, then (5.25) is a line. The minimum is therefore determined

according to the sign s of the slope (5.26):

α1 =

{
Lα1 if s > 0

Hα1 if s < 0

Again, α2 is then given using (5.28) which yields

α2 = αo
2 + z1z2 (αo

1 − α1) .

Note that the case ρ < 0 is impossible, as the matrix K is always a matrix

of inner-products, according to its definition (5.8). Thus, ρ corresponds to a

squared distance between two vectors, and is non-negative.
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Computing the Bias

As stated earlier, the bias b of the SVM is easily found with equation (5.9) for

l such that

αmin
l < αl < αmax

l . (5.29)

However, we can only assume that these equations are valid for the same b only

if the training is finished (that is, when we found a minimum α of (5.6) and

we know that KKT conditions are verified with this α). Thus, in the middle

of the training, for each l such that (5.29) is satisfied, one bias bl exists such

that
bl = −[ zl γl + w · φl ]

= −zl

[
γl +

1
µ

M∑
m=1

zm zl αm φm · φl

]

= −zl

[
1
µ

Kα + γ

]
l

.

(5.30)

We thus could estimate the bias b by taking an average of bl values found

with (5.30), which will be equal to the correct value at the end of the training.

More simply, we can just take the estimate

b =
1
2

[
max

l
bl + min

l
bl

]
, (5.31)

which will also be equal to the correct value at the end of the training.

Shrinking

The idea of shrinking is to fix some variables αl whose values have been equal

to the bounds αmin
l or αmax

l for a long time during training, and that will

hopefully not change anymore. Note that at the end of training, according to

KKT conditions (5.5), if αl = αmin
l = 0, then ξl = 0 and the constraint (5.3)

can be rewritten as

zl [w · φl + b ] + γl ≥ 0 . (5.32)

Furthermore, if the inequality (5.32) is strictly satisfied, then αl = 0. Moreover,

if αl = αmax
l = 1

L then ξl ≥ 0 and

zl [w · φl + b ] + γl ≤ 0 . (5.33)

Also, if (5.33) is strictly satisfied, then αl = αmax
l . Note that (5.32) and (5.33)

can be easily verified by noticing that the following equality holds:

zl [w · φl + b ] + γl = zl b+ γl +
1
µ

M∑
m=1

zm zl αm φm · φl

=
[

1
µ

Kα + γ

]
l

+ zl b ,

(5.34)
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where b is estimated using (5.31).

Therefore, if αl is equal to αmin
l or αmax

l , and if (5.32) or (5.33) are strictly

satisfied (by more than a positive threshold chosen by the user) during a certain

amount of training iterations (again chosen by the user), we can expect that

the corresponding variable αl will stay at its value. We can fix such variables

during the rest of the training, and continue to deal only with other variables

after this shrinking phase. Note, however, that shrinking is only a heuristic.

One can still verify at the end of the training that the KKT conditions are

satisfied for all fixed variables, and re-train with them if needed (unshrinking

phase).

Termination Criterion

We already highlighted that if α is solution of the minimization problem (5.6)

then the KKT conditions have to be verified for some (w, b, ξ, η) and with

this α. We also pointed out that if the KKT conditions are satisfied for

(w, b, ξ, α, η) then α is a minimum of (5.6) and (w, b, ξ) is a minimum

of (5.2). Thus, we could say that the training is finished if the KKT con-

ditions are satisfied “well enough”. Since KKT conditions are satisfied if all

biases bl computed with (5.30) are equal, we can consider the training finished

when these biases are “sufficiently close”. In other words, if

max
l
bl −min

l
bl

is sufficiently small (with respect to a threshold determined by the user), then

the training is considered as finished.

Implementation Details

Note that in all computations needed by this decomposition algorithm, the only

expensive part is the computation of the gradient of the cost:

∂J

∂α
=

1
µ

Kα + γ .

Thus, we should keep track of this gradient in a memory table, which requires

the storage of M real values. After a variable αl is updated, we can update

this gradient as

∀m ∈ {1 . . .M},
(
∂J

∂α

)
m

←
(
∂J

∂α

)
m

+
1
µ
Kml [αl − αo

l ]

where αo
l was the old value of the variable. Note that for this update, we only

need the l-th column of the matrix K. Thus, this algorithm does not require
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the full storage of K in memory. It is interesting to implement a cache that

keeps in memory the columns of K that correspond to the most used variables

αl in order to avoid recomputing these columns at each iteration.

Convergence

Keerthi and Gilbert (2002) proved that the decomposition algorithm converges

for a working set of size 2, if the shrinking is not used. Furthermore, Lin (2001)

has shown the convergence of this algorithm for any value of working set size

(but again without shrinking), under the following hypothesis which is true if

K is positive definite:

Assumption 5.1 The matrix K satisfies

min
I

(min(eig(KII))) > 0

where I is any subset of {1 . . .M} with |I| ≤ q, KII is a square sub-matrix of

K, and min(eig(.)) is the smallest eigenvalue of a matrix.

Note that shrinking is a heuristic, and although using it should speed up the

algorithm, proofs of convergence will no longer hold.

The Regression Case

As we highlighted at the beginning of the chapter, the decomposition algo-

rithm we proposed is a generalization of the algorithm for classification tasks

proposed by Joachims (1999). We thus did not contribute anything for classi-

fication tasks. However, as our algorithm is slightly different than other algo-

rithms for the case of a regression task, we focus now on the regression case in

this section.

Comparisons With Other Algorithms

Many authors have proposed decomposition algorithms for regression. For in-

stance, Shevade et al. (2000) proposed two modifications of the SMO algorithm

REF S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM

classifier design. Machine Learning, 46(1–3):351–360, 2002.

REF C. J. Lin. On the convergence of the decomposition method for support vector ma-

chines. IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.

REF S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. Murthy. Improvements

to the SMO algorithm for SVM regression. IEEE Transaction on Neural Networks, 11(5):
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from Platt (1999a) for regression, based on work from a previous paper on clas-

sification problems from the same team (see Keerthi et al., 2001). Laskov (2000)

proposed also a decomposition method for regression problems which is very

similar to the second modification proposed by Shevade et al. (2000). In fact,

Laskov’s method for a sub-problem of size 2 uses the same selection algorithm

as well as the same termination criterion as Shevade et al.

Their method for selecting the working set is very similar to the one we

show in this chapter, but while we propose to select variables αl independently

of their counterparts α∗l (with notations of Chapter 3, hidden in our general

formalization (5.6) through the substitution (5.10)), they propose to select si-

multaneously pairs of variables (αl, α
∗
l ). Even if this seems to be a small

difference, let us note that for the optimal solution as well as during the op-

timization process αl α
∗
l = 0 ∀l, in the case of algorithms such as the one we

proposed here, as proven by Lin (2001). Thus, one of the two variables αl or

α∗l is always equal to 0, and choosing the αl and α∗l independently can help to

quickly eliminate many variables, thanks to the shrinking phase, as verified in

practice later in the chapter. This has, of course, a direct impact on the speed

of our algorithm: working with pairs of variables would force the algorithm to

do many computations with null variables until the end of the optimization

process.

Smola and Schölkopf (1998) also proposed earlier to use a decomposition

algorithm for regression based on SMO, using an analytical solution for the

sub-problems, but again they proposed to select two pairs of variables (two

αl and their corresponding α∗l ) instead of two variables as we propose in this

paper.

Finally, Flake and Lawrence (2002) proposed a modification of SMO for re-

1188–1183, 2000.

REF J. C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods.

The MIT Press, 1999a.

REF S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. Murthy. Improvements to

platt’s SMO algorithm for SVM classifier design. Neural Computation, 13(3):637–649, 2001.

REF P. Laskov. An improved decomposition algorithm for regression support vector ma-

chines. In S. A. Solla, T. K. Leen, and K. R. Müller, editors, Advances in Neural Information

Processing Systems 12. The MIT Press, 2000.

REF C. J. Lin. On the convergence of the decomposition method for support vector ma-

chines. IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

REF A. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report

NeuroCOLT NC-TR-98-030, Royal Holloway College, University of London, 1998.

REF G. W. Flake and S. Lawrence. Efficient SVM regression training with SMO. Machine

Learning, 46(1–3):271–290, 2002.
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gression that uses the heuristics proposed by Platt (1999a) and those from Smola

and Schölkopf (1998), but their modification uses a new variable λl = αl − α∗l .
Once again, this forces the use of pairs (αl, α

∗
l ) during the computations.

The originality of our algorithm is thus to select independently the variables

αl and α∗l , which has the side effect of efficiently adapting the shrinking step

proposed in classification by Joachims (1999) (it is indeed more difficult to

think of an efficient shrinking method in the context of pairs of variables).

This also helps to simplify the resolution of the sub-problem in the case where

q = 2. Finally, the following experiments suggest that this idea leads to faster

convergence times.

Experimental Results

We compared our SVM implementation for regression problems (SVMTorch,

included now in the Torch library introduced in Chapter 4) to the one from Flake

and Lawrence (2002) using their publicly available software Nodelib. This is

interesting because Nodelib is based on SMO where the variables αl and α∗l

are selected simultaneously, which is not the case for SVMTorch, as highlighted

previously. Note also that Nodelib includes some enhancements compared to

SMO which are different from those proposed by Shevade et al. (2000).

Both these algorithms use an internal cache in order to be able to solve

large-scale problems. All the experiments presented in this chapter have been

done on a Pentium III 750Mhz processor. The parameters of the algorithms

were not chosen to obtain the best generalization performance, since the goal

was to compare the speed of the algorithms. However, we have chosen them in

order to obtain reasonable results. Both programs used the same parameters

with regard to cache, precision, etc. For Nodelib, the other parameters were

set using the default values proposed by the authors.

We compared the programs on four different tasks. As this is the only time

REF J. C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods.

The MIT Press, 1999a.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.

REF G. W. Flake and S. Lawrence. Efficient SVM regression training with SMO. Machine

Learning, 46(1–3):271–290, 2002.

REF S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. Murthy. Improvements

to the SMO algorithm for SVM regression. IEEE Transaction on Neural Networks, 11(5):

1188–1183, 2000.
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# Train # Test Dim

Kin 6192 2000 32

Artificial 20000 2000 100

Forest 25000 10000 54

Sunspots 40000 2500 12

Table 5.1. For each data set, “# Train” is the maximum available number

of training examples and “# Test” is the number of test examples. “Dim” is

the input dimension.

in this thesis that we are dealing with regression tasks, we introduce them now:

Kin This data set is available at

http://www.cs.toronto.edu/~delve/data/kin/desc.html,

and represents a realistic simulation of the forward dynamics of an 8 link

all-revolute robot arm. The task is to predict the distance of the end-

effector from a target, given features like joint positions, twist angles,

etc.

Sunspots Using a series representing the number of sunspots per day, we

created one input/output pair for each day: the yearly average of the

year starting the next day had to be predicted using the 12 previous

yearly averages.

Artificial This is an easy artificial data set based on Sunspots: we create a

daily series where each value is the yearly average centered on that day.

The task is to predict a value given the 100 previous ones.

Forest This data set is a classification task as presented in Chapter 4 with 7

classes, where only the first 35000 examples were used here. We trans-

formed it into a regression task where the goal was to predict +1 for

examples of class 2 and −1 for the other examples. Note that since class

2 was over-represented in the data set, this transformation leads to a

more balanced problem.

The training set size and the testing set size can be found in Table 5.1. Note

that all experiments used a Gaussian kernel instead of an explicit Φ function,

as explained in Chapter 3. For the experiments involving SVMTorch, we have

tested a version with shrinking but without verifying at the end of the op-

timization whether all the suppressed variables verified the KKT conditions
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Working set size q

2 4 10 50 100

Kin 11 14 16 28 54

Artificial 98 149 190 629 1537

Forest 272 406 462 670 981

Sunspots 7 11 15 45 89

Table 5.2. Training time (in seconds) as a function of the working set size

q, with SVMTorch (shrinking activated).

(SVMTorch), with no shrinking (SVMTorchN), and a version with shrinking

and unshrinking at the end of the optimization (SVMTorchU). As will be seen

in the results, the first method converges much quicker, with a small negative

impact on the generalization performance in general.

Optimal Working Set Size

Using the first 10000 examples of each data set (except 6192 for Kin), we

trained different models using various values of the working set size q, from

2 to 100. We used a fixed cache size of 100MB and turned on the shrinking.

The optimizer used to solve the sub-problems of size q > 2 was a conjugate

gradient method with projection, written by Bottou (personal communication).

Table 5.2 gives the results of these experiments. It is clear that q = 2 is always

faster than any other value of q. Thus, in the following experiments, we have

always used q = 2.

Small Data Sets

Let us now compare SVMTorch and Nodelib on small data sets. Only the first

5000 training examples were used here, and the size of the cache was set to

300MB, so that the whole kernel matrix could be kept in memory. This allows

us to perform a comparison of the algorithms themselves (and not the imple-

mentations), as there is no cache handling. We give the results in Table 5.3,

in terms of time, final value of the cost (5.6) and Mean Absolute Error (MAE)

on the training and test tests. As can be seen, for all the data sets, SVM-

Torch is usually many times faster than Nodelib (except for Artificial in the

case of SVMTorch without shrinking). Since the whole matrix of the quadratic

problem was in memory, handling of the cache had no effect on the speed re-

sults. Thus one can conclude that one of the main differences between these

algorithms is the selection of the sub-problem, and that selecting the αl inde-
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Data Set Model Time Final MAE

# SV Cost Train Test

SVMTorch 7 936 -173977.85 0.30 0.31

Kin SVMTorchU 15 936 -173977.85 0.30 0.31

SVMTorchN 45 941 -173982.65 0.30 0.31

Nodelib 157 932 -174019.67 0.30 0.31

SVMTorch 31 342 -13594.01 0.25 0.52

Artificial SVMTorchU 166 367 -13703.07 0.24 0.51

SVMTorchN 448 370 -13701.41 0.24 0.51

Nodelib 231 342 -13707.29 0.24 0.51

SVMTorch 21 993 -1012.46 0.51 0.80

Forest SVMTorchU 65 1051 -1030.78 0.41 0.80

SVMTorchN 110 1058 -1030.43 0.41 0.80

Nodelib 542 1032 -1031.54 0.41 0.80

SVMTorch 2 420 -3489571.13 9.65 10.12

Sunspots SVMTorchU 9 422 -3489630.53 9.65 10.11

SVMTorchN 38 422 -3489628.27 9.64 10.11

Nodelib 327 422 -3489630.65 9.64 10.11

Table 5.3. Experiments on small training sets. “SVMTorch” is SVMTorch

with shrinking, “SVMTorchN” is SVMTorch without shrinking, “SVMTorchU”

is SVMTorch with shrinking and unshrinking at the end, “Time” is the training

time in seconds, “# SV” is the number of support vectors, “Final Cost” is the

value of (5.6) at the end of the training, “MAE Train” is the Mean Absolute

Error (MAE) over the training set, “MAE Test” is the MAE over the test set.
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pendently of the α∗l is very efficient, as suspected previously. However, Nodelib

gave slightly better results in terms of the final cost function value probably

due to a slightly difference in the termination criteria, but not in terms of MAE.

Note that for problems of this size, shrinking does not cause the performance to

deteriorate too much (look at the values of the final cost function as well as the

training and test set performance) but significantly speeds up the algorithm.

Large Data Sets

Let us now turn to experiments using large data sets. Table 5.4 shows results

using the whole training sets for all data sets, again using a cache size of 300MB.

Since the problems are now too big to be kept in memory, the implementation

of the cache becomes very important and comparisons of the algorithms used

in SVMTorch and Nodelib become more difficult. Nevertheless, it is clear that

SVMTorch is always faster, except again on Artificial in the cases with no

shrinking or with unshrinking, but the performance on the test sets is similar.

However, note that shrinking sometimes leads to very poor results in terms of

test set performance, as is the case on Forest. It is thus clear that shrinking

should be used with care, particularly for large data sets, and the parameter

that decides when to eliminate a variable should be tuned carefully before

running a series of experiments on the same data set.

Size of the Cache

We also performed experiments to measure the effect of the size of the cache

on the training time. Table 5.5 shows the results for different cache sizes,

from 10 to 100MB. In these experiments, we used the first 10000 examples of

each data set (6192 for the smaller Kin). The only clear conclusion from these

experiments is that the higher the size of the cache, the faster SVMTorch is,

but the relation is completely problem dependent. Note that in the case of

Kin and Sunspots data sets, it seems that 10MB of memory cache is enough to

contain all inner-products of examples used during the optimization. Adding

more cache is useless and does not improve the training time.

Scaling With Respect to the Size of the Training Set

Finally, we tried to evaluate how SVMTorch (with shrinking) and Nodelib

scaled with respect to the size of the training set. In order to be unaffected

by the implementation of the cache system, we computed the training time

for training sets of sizes 500, 1000, 2000, 3000, 4000, and 5000, so that the
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Data Set Model Time Final MAE

# SV Cost Train Test

SVMTorch 11 1140 -212439.78 0.30 0.31

Kin SVMTorchU 32 1140 -212439.78 0.30 0.31

SVMTorchN 86 1140 -212439.78 0.30 0.31

Nodelib 273 1138 -212478.38 0.30 0.31

SVMTorch 235 706 -39569.14 0.21 0.34

Artificial SVMTorchU 4394 817 -40025.98 0.20 0.33

SVMTorchN 9182 824 -40016.55 0.20 0.34

Nodelib 2653 764 -40043.94 0.20 0.33

SVMTorch 4573 3019 -56266.94 1.63 1.82

Forest SVMTorchU 40669 4080 -78297.27 0.40 0.93

SVMTorchN 79237 4233 -78294.56 0.39 0.93

Nodelib 87133 4088 -78384.15 0.39 0.93

SVMTorch 67 1771 -11215476.03 8.97 12.72

Sunspots SVMTorchU 1290 1822 -11229107.83 8.96 12.59

SVMTorchN 2606 1820 -11229098.49 8.96 12.59

Nodelib 24022 1818 -11229124.45 8.96 12.59

Table 5.4. Experiments on large training sets. See Table 5.3 for a descrip-

tion of the fields.

Size of the cache (in MB)

10 20 30 40 50 60 70 80 90 100

Kin 11 11 11 11 11 11 11 11 11 11

Artificial 359 182 106 100 99 98 98 98 98 98

Forest 869 715 622 519 450 391 355 316 305 272

Sunspots 7 7 7 7 7 7 7 7 7 7

Table 5.5. Training time (in seconds) with respect to the size of the cache

(in MB).
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Kin Artificial Forest Sunspots

Scale SVMTorch 1.81 1.72 1.82 1.85

Scale Nodelib 1.83 1.93 2.09 2.44

Table 5.6. Scaling of SVMTorch and Nodelib for each data set. Results give

the slope of the linear regression in the log-log domain of time versus training

size.

whole matrix of the quadratic problem could be kept in memory. Given the

results, we performed a linear regression of the log of the time given the log

of the training size. Table 5.6 gives the slope of this linear regression for each

problem, which gives an idea of how SVMTorch scales: it appears to be slightly

better than quadratic, and slightly better than Nodelib.

Contributions

This chapter is a strongly re-arranged version of the following published

paper:

R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-

scale regression problems. Journal of Machine Learning Research, 1:143–160,

2001.

The mathematics in this paper appear significantly different because at the

time it was written the links with Joachims (1999) classification algorithm

were not completely clear. Thus, for this chapter, all the mathematics were

rewritten, in a more general way to be able to deal with classification and

regression at the same time. This clearly shows our main contribution is a

re-formulation of the regression problem, which allows us to apply directly

Joachims’s algorithm. The results given in this chapter are a summary of

experiments given in the paper. Finally, note that the algorithm we presented

in this chapter is implemented in the Torch library (presented in Chapter 3)

and is one of the most used widely SVM software packages today.

Conclusion

We have presented in a unified way a decomposition algorithm intended to

efficiently solve large-scale SVM problems, for both classification and regression

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.



Conclusion 67

tasks. This algorithm followed the same principles as those used by Joachims

(1999) in his classification algorithm. In the regression case, we showed that

compared to previously proposed decomposition algorithms, we have proposed

an original method to select the variables in the working set. We have also

shown how to solve analytically sub-problems of size 2, as it is done in the

SMO algorithm, proposed by Platt (1999a). In addition, we highlighted that

there exists a convergence proof for our algorithm. Concerning the implemen-

tation, an internal cache keeping part of the kernel matrix in memory enables

the program to solve large problems without the need to keep quadratic re-

sources in memory and without the need to recompute every kernel evaluation,

which leads to a fast overall algorithm. Finally, an experimental comparison

with another algorithm has shown significant time improvement for large-scale

problems and training time generally scaling slightly less than quadratically

with respect to the number of examples.

Even with this state-of-the-art SVM training algorithm, it is often in-

tractable to train SVMs on large databases, due to the scaling factor, which is

slightly less than quadratic at best when the memory cache is sufficient. To be

able to deal with large databases with such algorithms, we proposed a divide

and conquer method: break up the training set into small subsets, and apply

the SVM algorithm on each subset. The challenge is to find a smart way to

partition the training set, while retaining the good generalization performance

for which the SVMs are well known. This is the subject of the next chapter.

REF J. C. Platt. Fast training of support vector machines using sequential minimal opti-

mization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods.

The MIT Press, 1999a.
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6 Divide and Conquer

One of the challenges for statistical learning is to be able to deal with large

data sets, as in data mining. Indeed, many machine learning algorithms such

as Support Vector Machines (SVMs) are known to require resources which are

at least quadratic in the number of training examples, which raises a serious

research challenge if we want to deal with data sets of millions of examples.

To overcome this problem, one of the first ideas proposed in this thesis is

to apply a divide and conquer strategy over already known machine learning

algorithms. In other words, we would like to split up training tasks into small

pieces. The main concern is finding a way to split the tasks such that the

generalization performance is not decreased when compared to the original

machine learning algorithm performance. We propose in this chapter a “hard”

parallelizable mixture methodology which yields significantly reduced training

time through modularization and parallelization: the training data is iteratively

partitioned by a gater model in such a way that it becomes easy to learn an

expert model separately in each subset of the partition. Using a set of generative

models with a probabilistic extension allows a representation of the gater such

that all pieces of the model are trained locally. We propose experiments on

a realistic classification task. With SVM experts, time complexity empirically

grows linearly with the number of examples, while generalization performance

can be enhanced. We also justify the use of our hard mixture algorithms by

giving the cost functions they minimize. Indeed, we show that in a probabilistic

framework these cost functions are upper bounds on negative log-likelihoods of

conditional and joint densities of the training data.



70 Divide and Conquer

Motivation

As more and more data is collected worldwide, the interest in extracting

useful information from these data sets with data mining algorithms brings

several challenges to statistical learning researchers. One of these challenges

is the sheer size of the data sets: many learning algorithms require training

times that grow too fast with respect to the number of training examples. This

is the case with SVMs and Gaussian processes (see Williams and Rasmussen,

1996), both non-parametric learning methods that can be applied to classifi-

cation, regression, and conditional probability estimation. Both require O(L3)

training time (for L training examples) in the worst case or with a poor im-

plementation. Empirical computation time measurements on state-of-the-art

SVM implementations show that training time grows much closer to O(L2)

than O(L3) as shown by Joachims (1999) and previously in Chapter 5. It

would therefore be extremely useful to have general-purpose algorithms which

allow the decomposition of a learning problem in such a way as to drastically

reduce the training time, so that it grows closer to O(L).

Cheap Computers

Another motivation for the work presented in this chapter is the availability of

cheap parallelism with PC clusters (e.g. Linux clusters). If a decomposition

algorithm could separate the work in tasks involving little or rare communica-

tion between tasks, then training time could be reduced by a factor depending

on the number of available computers with such loosely-coupled clusters, to the

contrary of a parallelization method such as the one proposed by Estévez et al.

(2002) which requires clusters with efficient communication between nodes.

Divide and Conquer

The basic idea proposed in this chapter is to use an iterative divide and conquer

strategy to learn a partition of the data such that, ideally (1) the partition is

REF C. K. I Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S.

Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information

Processing Systems, volume 8, pages 514–520. MIT Press, 1996.

REF T. Joachims. Making large-scale support vector machine learning practical. In

B. Schlkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press,

1999.

REF P. A. Estévez, Hélène Paugam-Moisy, Didier Puzenat, and Manuel Ugarte. A scalable

parallel algorithm for training a hierarchical mixture of neural experts. Parallel Computing,

28:861–891, 2002.
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“simple”, i.e. it can be learned with good generalization by a model with a

limited capacity, which we will call the gater, and (2) the learning task in each

region of the partition is “simple”, i.e. it can be learned with good generaliza-

tion by an expert model trained only on the examples of that region. In the

end, the prediction for a test point can be obtained by mixing the predictions

of the different experts, in which their predictions are weighted with the output

of the gater. Through this process, a Mixture of Experts (MoEs) as presented

in Chapter 3 is obtained, but which has not been trained in the usual way

(maximum likelihood, mean squared error minimization, etc...). Note that we

will focus only on classification tasks in this chapter, but our ideas could easily

be extended to other tasks.

Practical Implementations

In this chapter we also propose practical implementations of our mixture when

using MLPs and SVMs as experts. Note that the ideas of MLP mixtures (see

Jacobs et al., 1991) or of SVM mixtures (see Kwok, 1998) are not new, al-

though previous attempts trained each model on the whole training set. We

instead advocate mixtures in which each model is trained only on part of the

data set, to overcome the time complexity problem for large data sets. We

propose here simple methods to train such mixtures, and we will show that

in practice these methods are much faster than training only one model, and

have experimentally lead to results that are at least as good as one SVM or

one MLP. We conjecture that the training time complexity of the proposed ap-

proach with respect to the number of examples is sub-quadratic for large data

sets. Additionally this mixture can be easily parallelized, which could improve

again significantly the training time.

Standard MoEs

We consider in this chapter a binary classification task, as already defined

in Chapter 3. We previously introduced MoEs, as a model fθ which performs

the decomposition into K experts fθ,k

fθ(x) =
K∑

k=1

gθ,k(x) fθ,k(x) with
K∑

k=1

gθ,k = 1 and gθ,k ≥ 0 ∀k , (6.1)

REF R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixture of local

experts. Neural Computation, 3(1):79–87, 1991.

REF J. T. Kwok. Support vector mixture for classification and regression problems. In

Proceedings of the International Conference on Pattern Recognition (ICPR), pages 255–258,

Brisbane, Queensland, Australia, 1998.
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given an input vector x, where the weights of each expert is given by a gater

gθ(·) = {gθ,1(·), . . . , gθ,K(·)}. The generic vector θ refers to the parameters of

the model.

It is interesting to consider MoEs in a probabilistic framework, where the

goal is to estimate the conditional distribution P (y|x) given an example (x, y).

In that case, we consider the discrete variable E(x) which assigns an example

(x, y) to one expert, knowing only x. We can thus write the decomposition

Pθ(y|x) =
K∑

k=1

Pθ(k|x)Pθ(y|x, k) , (6.2)

where θ represents the parameters of the model, and where the conditional

distribution Pθ(y|x, k) = Pθ(y|x, E = k) defines the expert k. The gater is also

given by the distribution Pθ(k|x) = Pθ(E = k|x), and probabilistically assigns

each example to an expert. Usually this kind of mixture is trained using a log-

likelihood maximization technique, that is, by minimizing −
∑L

l=1 log Pθ(yl|xl)

over the training set (An example of this kind of mixture is given by Jordan

and Jacobs, 1994).

Note that the probabilistic and non-probabilistic versions are very similar.

The mixture (6.2) in a probabilistic framework is indeed a case of the general

mixture (6.1) when writing

fθ,k(x) = Pθ(y = 1|x, k) and gθ,k(x) = Pθ(k|x) . (6.3)

In fact, the only difference is that in the probabilistic case we add the con-

straints fθ,k ≥ 0, ∀k , and the training algorithm must maximize conditional

probabilities Pθ(y|x).

A New Conditional Mixture

A standard mixture of experts represents a soft decomposition of the data

into subsets, thus both the gater and each expert must be trained on the whole

data set. Because we want to train complex models on large data sets, we

would like to take advantage of such a decomposition to split up the training

task into small pieces instead. That is the key point of the new models.

Hard Mixture With Global Gater

We propose Algorithm 6.1 to train the mixture (6.1) in a general framework.

This algorithm can also be used to train the mixture (6.2) in a probabilistic

REF M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.

Neural Computation, 6(2):181–214, 1994.
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framework, using the relations in (6.3). The idea is intuitively obvious: one

iterates to discover a good partition of the training set, which potentially could

better represent the structure of the training set. At each iteration, the experts

are trained over one of the subsets given by the partition, and then the new

partition is re-generated according to the “confidence” the gater has in each

expert, for a given example. In a general framework, this corresponds to as-

signing an example x to the expert corresponding to the largest gater output

gθ,k(x). In a probabilistic framework, the confidence of the gater is given by

Pθ(k|x). Note that we redistribute an example (x, y) to the most appropriate

expert knowing only the input x.

Algorithm 6.1 Training algorithm for a hard mixture with a global gater.
1. Divide the training set into K random subsets Dk of size near L/K

repeat

2. Train each expert fθ,k separately to minimize a “local criterion” on

Dk

3. Keeping the experts fixed, train the mixture (6.1), and thus the non-

fixed gater gθ, to minimize a “global criterion” on the whole training

set

4. Reconstruct K subsets:

for l ∈ {1..L} do

a. Sort the experts in descending order according to the values gθ,k(xl)

b. Assign the example to the first expert in the list which has less

than (L/K+1) examples in order to ensure a balance between the

experts

end for

until termination criterion

Local and global criteria in Algorithm 6.1 are chosen arbitrary. For exam-

ple, when using an MLP gater and SVMs (which do not output probabilities)

as experts, one could use the SVM criterion for the local criterion, and the

Mean Squared Error (MSE) criterion for the global criterion. When using

MLPs (which are able to output probabilities) for the gater and the experts,

one could use the log-likelihood criterion in both cases. Note that step 2 of this

algorithm can be easily implemented in parallel as each expert can be trained

separately on a different computer. Also note that step 3 can be an approxi-

mate minimization that can continue from the solution found at the end of the

previous outer loop iteration. In step 4, it is crucial to enforce balance between

the experts. This prevents one expert from “capturing” all the training exam-
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ples. Finally, the termination criterion could be a given number of iterations

or an increasing validation error.

Hard Mixture With Local Gater

One possible drawback of the previous model is that the gater must be trained

over the whole data set, which could create a bottleneck in training time. Thus,

we propose, in a probabilistic framework, to break up the gater itself into sub-

models (one per expert) that can be trained separately. Indeed, using Bayes’

rule, the k-th output Pθ(k|x) of the gater can be rewritten as

Pθ(k|x) =
Pθ(x|k)Pθ(k)∑K
j=1 Pθ(x|j)Pθ(j)

, (6.4)

where Pθ(k) represents the prior probability of an example to be attributed to

the k-th expert and Pθ(x|k) represents the set of examples corresponding to the

k-th expert. We thus associate to each expert a generative model Pθ(x|k) that

can be trained solely on the subset Dk. Algorithm 6.1 can then be directly ap-

plied using (6.4) when the conditional probability Pθ(k|x) is needed. However,

we previously highlighted that in Algorithm 6.1 we use only the knowledge of

x to re-assign the example (x, y). In the case of a probabilistic framework, we

should have considered the target y as well, since it is known during training

(even if we did not in this thesis, as the first mixture was originally designed

to deal with non-probabilistic models such as SVMs). In the case we consider

now (breaking up the gater into generative models) we can apply once again

Bayes’ rule

Pθ(k|x, y) =
Pθ(y|x, k)Pθ(x|k)Pθ(k)∑K
j=1 Pθ(y|x, j)Pθ(x|j)Pθ(j)

. (6.5)

It is then straightforward to adapt Algorithm 6.1 using the decompositions (6.4)

and (6.5), as given in Algorithm 6.2. Note that in each iteration of the outer

loop, the training of both the “broken up gater” and the experts can be achieved

in parallel. Only the re-assignment of the examples remains non-parallelizable.

Extension to Regression Tasks

Algorithm 6.1 can be applied to regression tasks without any modifications, in

the case of non-probabilistic framework. When using a probabilistic framework,

one could consider the decomposition of the conditional expectation

Eθ(y|x) =
K∑

k=1

Pθ(k|x)Eθ(y|x, k) ,
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Algorithm 6.2 Training algorithm for a hard mixture with a local gater.
1. Divide the training set into K random subsets Dk of size near L/K

repeat

2. Train each expert Pθ(y|x, k) separately over Dk

3. Train each local gater Pθ(x|k) separately over Dk

4. Estimate the priors Pθ(k) using |Dk|/L
5. Reconstruct K subsets:

for l ∈ {1..L} do

a. Sort the experts in descending order according to the posterior

Pθ(k|xl, yl) computed using (6.5)

b. Assign the example to the first expert in the list which has less

than (L/K+1) examples in order to ensure a balance between the

experts

end for

until termination criterion

instead of the decomposition of the conditional probability (6.2). Then, Al-

gorithm 6.1 and Algorithm 6.2 can be easily extended to regression by using

Eθ(y|x, k) instead of Pθ(y|x, k).

What Criterion is Minimized?

The two algorithms we presented for training a mixture of experts in a hard

manner are based on an intuitive decomposition of the training set through

the iterations. We will justify our intuition in this section, in the case of a

probabilistic framework.

Local Gater, Probabilistic Framework

Let us first focus on Algorithm 6.2 in a probabilistic framework. We also

consider the criterion

J6.2(θ, e) = −
L∑

l=1

K∑
k=1

elk log[Pθ(yl|xl, k)Pθ(xl|k)Pθ(k) ] , (6.6)

where elk ∈ {0, 1} is a binary variable that selects the k-th expert for exam-

ple l, with the selection constraints ∀l,
∑

k elk = 1 and balancing constraints

∀k,
∑

l elk ≈ L/K. To relate this to Algorithm 6.2, note that we are trying to

perform the double minimization

min
θ

min
e
J6.2(θ, e) .
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The idea of Algorithm 6.2 is to perform a “coordinate descent” on J6.2(θ, e).

In the first stage of each iteration e is fixed and θ is modified in order to

decrease J6.2(θ, e). As the probabilities corresponding to the expert and the

gater decouple in (6.6) they can be maximized separately, as in steps 2 and

3 of the algorithm. In the second stage, θ is fixed and e (the assignment

of examples to experts) is modified in order to decrease J6.2(θ, e). Given an

example (xl, yl), choosing the expert k which yields the greatest Pθ(k|xl, yl)

is the best we can do to minimize J6.2(θ, e) according to equation (6.5).

Furthermore, the criterion J6.2(θ, e) is an upper bound on the joint negative

log-likelihood

L2(θ) = −
L∑

l=1

log Pθ(yl,xl) , (6.7)

since with the constraints on e we can derive

−
L∑

l=1

log[
K∑

k=1

Pθ(yl,xl, k) ] ≤ −
L∑

l=1

log[ elk

K∑
k=1

Pθ(yl,xl, k) ]

≤ −
L∑

l=1

K∑
k=1

elk log[Pθ(yl,xl, k) ]

≤ −
L∑

l=1

K∑
k=1

elk log[Pθ(yl|xl, k)Pθ(xl|k)Pθ(k) ] .

Thus, Algorithm 6.2 minimizes an upper bound on the negative joint log-

likelihood L2(θ). Note that both cost functions (the negative log-likelihood

and J6.2(θ, e)) will take similar values when the gater creates a hard partition.

In this case, given an example (xl, yl), the gater outputs Pθ(xl|k) in (6.6) will

be zero for all k except for one index k?
l , where Pθ(xl|k?

l ) = 1. Moreover, as

the variables elk are chosen to minimize (6.6), it insures that elk?
l

= 1. Thus,

the likelihood (6.7) which be rewritten as

L2(θ) = −
L∑

l=1

log[
K∑

k=1

Pθ(yl|xl, k)Pθ(xl|k)Pθ(k)]

= −
L∑

l=1

log[Pθ(yl|xl, k
?
l )Pθ(xl|k?

l )Pθ(k?
l )] ,

and the criterion (6.6) are equal.

Global Gater, Probabilistic Framework

In the case of Algorithm 6.1, a similar bound can be derived when the update of

the training set partition is achieved using the knowledge of both the inputs and

targets of the examples, i.e. when using the conditional probability Pθ(k|x, y)
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instead of only Pθ(k|x). Under this assumption, and using the same notations

as for the bound derived previously for the mixture using a “local gater”, we

consider the criterion

J6.1(θ, e) = −
L∑

l=1

K∑
k=1

elk log[Pθ(yl|xl, k)Pθ(k|xl) ] .

Once again, it is easy to see that Algorithm 6.1 is performing a double mini-

mization with respect to θ and then e at each iteration. In particular, when θ

is fixed, if we consider Bayes’ rule

Pθ(k|x, y) =
Pθ(y|x, k)Pθ(k|x)∑K
j=1 Pθ(y|x, j)Pθ(j|x)

,

then assigning an example (x, y) to the k-expert using Pθ(k|x, y) is the best we

can do to minimize J6.1(θ, e). It is also straightforward to see that the criterion

J6.1(θ, e) is an upper bound on the conditional negative log-likelihood

L1(θ) = −
L∑

l=1

log Pθ(yl|xl) .

As in Algorithm 6.2, J6.1(θ, e) is equal to the likelihood L1(θ) if the gater

creates a hard partition. Finally, note that in the ideal case where gaters cre-

ate hard partitions, Algorithm 6.1 is minimizing the conditional log-likelihood

L1(θ), which is a more simple task than the minimization of the joint log-

likelihood L2(θ) achieved by Algorithm 6.2.

Global Gater, General Framework

Unfortunately, a mathematical justification for Algorithm 6.1 could not be

found in a non-probabilistic framework. However, as we will see in the experi-

ments, this algorithm seems to work pretty well in practice.

About Other Mixtures

The idea of MoEs is quite old and has given rise to very popular algo-

rithms since their introduction in the machine learning research community

by Jacobs et al. (1991). However, in these models the gater and the experts

are trained on the whole training set instead of subsets (using gradient descent

REF R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixture of local

experts. Neural Computation, 3(1):79–87, 1991.

REF M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.

Neural Computation, 6(2):181–214, 1994.
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or the Expectation-Maximization algorithm as proposed by Jordan and Jacobs,

1994). Also, their parameters are usually trained simultaneously. Hence such

an algorithm is quite demanding in terms of resources when the training set is

large.

In the more recent Support Vector Mixture model proposed by Kwok (1998),

the experts (which were typically MLPs) are replaced by SVMs and a learning

algorithm is given. Once again, the resulting mixture is trained jointly on the

whole data set.

Haruno et al. (2001) also proposed an algorithm, in which each expert is

associated to a generative model, again trained on the whole training set.

In a divide-and-conquer approach introduced by Rida et al. (1999), the

authors propose to first divide the training set using an unsupervised algorithm

to cluster the data (typically a mixture of Gaussians), then train an expert

(such as an SVM) on each subset of the data corresponding to a cluster, and

finally recombine the outputs of the experts. Here, the algorithm indeed trains

the experts separately on small data sets, like our algorithm. However, there

is no notion of iteratively re-assigning the examples to the experts according

to gater’s predictions of how well each expert performs on each example. Our

experiments as shown later in this chapter suggest that this element is essential

to the success of the algorithm.

Finally, the Bayesian Committee Machine proposed by Tresp (2000) is a

technique to partition the data into several subsets, train SVMs or Gaussian

Processes on the individual subsets, and use a specific combination scheme

based on the covariance of the test data to combine the predictions. This

method scales linearly with the size of the training data, but it cannot operate

on a single test example. This algorithm also assigns the examples randomly

to the experts.

Experiments: Hard Mixture With Global Gater

In this section we present two sets of experiments comparing the hard mix-

ture with a “global” gater to other machine learning algorithms in a two-class

REF J. T. Kwok. Support vector mixture for classification and regression problems. In

Proceedings of the International Conference on Pattern Recognition (ICPR), pages 255–258,

Brisbane, Queensland, Australia, 1998.

REF M. Haruno, D. M. Wolpert, and M. Kawato. MOSAIC model for sensorimotor learning

and control. Neural Computation, 13(10):2201–2220, 2001.

REF A. Rida, A. Labbi, and C. Pellegrini. Local experts combination through density

decomposition. In Proceedings of UAI’99. Morgan Kaufmann, 1999.

REF V. Tresp. A bayesian committee machine. Neural Comp., 12(11):2719–2741, 2000.
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(c) Mixture of two linear

SVMs

Figure 6.1. Classification problem where the goal is to separate blue circles

and red crosses. Comparison of the decision surfaces obtained by (a) a linear

SVM, (b) a Gaussian SVM, and (c) a linear mixture of two linear SVMs.

classification task framework. As the hard mixture with a global gater was

originally designed for non-probabilistic models, we tested it with SVMs ex-

perts. Thus, the “local” criterion in Algorithm 6.1 is the SVM criterion. The

gater is an MLP, with one hidden layer. The MLP has soft-max outputs (as

defined in Chapter 3), to ensure positive values which sum to one. We chose

the MSE criterion

Q((x, y), fθ) =
1
2

(y − tanh(fθ(x)))2 ,

as the “global” criterion. Note that we added a hyperbolic tangent at the

output of the mixture, which helped improve the training and generalization

performance. All these experiments have been performed using Athlon 1.2Ghz

CPUs.

A Toy Problem

In the first series of experiments, we test the mixture on an artificial toy problem

for which we generated 10,000 training examples and 10,000 test examples. The

problem has two non-linearly separable classes and has two input dimensions.

In Figure 6.1 we show the decision surfaces obtained first by a linear SVM, then

by a Gaussian SVM, and finally by the proposed mixture of SVMs. In the last

case, the gater was a simple linear function and there were two linear SVMs

in the mixture. This artificial problem shows clearly that the algorithm works

and is able to combine, even linearly, very simple models in order to produce

a non-linear decision surface.
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A Large-Scale Realistic Problem: Forest

We performed a series of experiments on part of the UCI Forest data set pre-

sented in Chapter 4. The hard mixtures had from 10 to 50 SVM experts with

Gaussian kernel; the MLP gater had between 25 and 500 hidden units. The

same hyper-parameters were selected for all iterations of the algorithm and for

all the SVM experts. We compared our models to

• two MLPs (one trained with the MSE criterion and the other one trained

with the Cross-Entropy (CE) criterion), where the number of hidden units

was selected on the validation set,

• an SVM, where the parameter of the kernel was also selected on the

validation set,

• a mixture of SVMs where the gater was replaced by a constant vector,

assigning the same weight value to every expert.

Table 6.1 gives the results of the first series of experiments. Note that for the

MLPs the iteration column indicates the number of training epochs, whereas

for hard mixtures it is the number of outer loop iterations. We selected two

variants of the hard SVM mixture, one for best generalization performance

and the other one for a good trade-off between generalization performance and

training time. The hard SVM mixture is much faster, even on one machine,

than the SVM. Since the mixture could easily be parallelized (each expert can

be trained separately), we also reported the time it takes to train in parallel,

that is with one computer per expert. The hard mixture also outperforms all

models in terms of generalization performance. It is important to note that

the choice of the partition used to train the experts is also crucial, since the

uniform mixture performed badly.

Finally, note the difference in performance between an MLP trained with

the MSE criterion and an MLP trained with the CE criterion. In trying to

interpret these results, one can say that the choice of the criterion is crucial and

some optimization problems exist when using the MSE criterion with MLPs.

We will discuss this further in Chapter 7.

In order to determine how the algorithm scales with respect to the number

of examples, we then compared one of the hard mixture of experts (50 experts,

150 hidden units in the gater) on different training set sizes. Figure 6.2a shows

the training time (using 50 computers) of the mixture of SVMs with a training

set size varying from 100,000 to 400,000 examples. In this case only, we used

the extra training examples available in the Forest database. For this range
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Model Test Time (minutes) Iteration

Error (%) 1 CPU Parallel

MLP (MSE, 500 hidden

units)

14.2 105 – 100

12.9 2100 – 2000

MLP (CE, 500 hidden

units)

11.6 105 – 100

8.9 1050 – 1000

SVM 10.5 7595 – –

Uniform SVM mixture (50

experts)

20.3 45 1 1

Hard mixture of SVMs

with global gater (50 ex-

perts, gater with 150 hid-

den units)

9.3 120 40 5

Hard mixture of SVMs

with global gater (50 ex-

perts, gater with 500 hid-

den units)

8.1 310 200 5

Table 6.1. Comparison of performance between an MLP trained with MSE,

an MLP trained with CE, an SVM, a uniform SVM mixture where the gater

always output the same value 1/K for each expert, and the hard mixture

of SVMs with a global gater (Algorithm 6.1). We present the testing error

performance, the time it took to train with one computer (1 CPU), and the

time it took to train with one computer per expert (Parallel). We also give the

number of iterations used to train each model.
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Figure 6.2. Experiments with a hard mixture of SVMs with a global gater

(50 experts, 150 hidden units in the gater) on the Forest database. (a) shows the

training time with respect to the number of training examples (from 100,000 to

400,000 examples), when training in parallel with 50 machines. (b) represents

training and validation errors of the mixture with respect to the number of

training iterations, on 100,000 training examples.

and this particular data set, the mixture of SVMs appears to scale linearly with

respect to the number of examples, and not quadratically as a classical SVM.

In fact, the mixture of SVMs was able to solve a problem of 400,000 examples

in less than 4 hours (on 50 computers) while it would have taken more than

two months to solve the same problem with a single SVM. Figure 6.2b shows

the evolution of the training and validation errors of the same hard mixture,

during 5 iterations of Algorithm 6.1. This convincing evidence that iterative

partitioning is essential in order to obtain good performance. It is also clear

that the empirical convergence of the outer loop is extremely rapid.

Experiments: Hard Mixture With Local Gater

The set of experiments proposed in this section concerns the training Algo-

rithm 6.2 of the hard mixture with a “local” gater. As standard SVMs do not

give probabilities as output, we first present results with MLPs as experts to

confirm that the approach works well with gradient-based learning algorithms.

Then we present some results using SVMs as experts, with the SVM output

being fed to a logistic regressor in order to obtain conditional probabilities, as

proposed by Platt (1999b).

REF J. C. Platt. Probabilistic outputs for support vector machines and comparison to

regularized likelihood methods. In Smola, Bartlett, Schölkopf, and Schuurmans, editors,
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MLP Experts

The experiments described here are again performed on the Forest data set.

We chose Gaussian Mixtures for the generative models (that is for the “local”

gaters). Gaussian mixtures are able to approximate any kind of distribution

by performing the decomposition

Pθ(x) =
Ng∑
n=1

Pθ(n)Pθ(x|n) ,

where Ng is the number of Gaussians, and the n-th Gaussian is defined with

Pθ(x|n) =
1

(2π)d/2|Σn|1/2
exp

[
−1

2
(x− µn)TΣ−1

n (x− µn)
]
.

The vector of parameters θ of the mixture are the weights Pθ(n) of each Gaus-

sian, the covariance matrices Σn, and the means µn. We trained them using the

Expectation-Maximization algorithm as proposed by Dempster et al. (1977). A

one-hidden-layer MLP trained with a log-likelihood maximization criterion was

chosen as the expert model. In other words, we maximize for the k-th expert∑
l∈Dk

log Pθ(yl|xl, k) . (6.8)

Here, we compare the hard mixture in a probabilistic framework with a stan-

dard (not hard) probabilistic mixture (with MLPs as experts and an MLP as

gater), trained by stochastic gradient ascent on the log-likelihood on the total

training set
L∑

l=1

log Pθ(yl|xl) . (6.9)

Once again, we give results obtained with two MLPs, one trained with the

MSE criterion and the other one trained with the CE criterion. The results

are summarized in Table 6.2. For MLPs and standard mixtures, the iteration

column indicates the number of training epochs, whereas for hard mixtures

it is the number of outer loop iterations. Note that for hard mixtures, the

number of inner loop epochs to train MLP experts was fixed to a maximum

of 100 (This number was chosen according to the validation set. Training

was stopped earlier if training error did not decrease significantly). The hard

mixture appears to work reasonably well. On this data set, we can obtain

generalization performance similar to an MLP trained with a reasonable time,

Advances in Large Margin Classifiers, pages 61–73. MIT Press, 1999b.

REF A. P. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of Royal Statistical Society, 39:185–197, 1977.
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Model Test Time (minutes) Iteration

Error (%) 1 CPU Parallel

MLP (MSE, 500 hidden

units)

14.2 105 – 100

12.9 2100 – 2000

MLP (CE, 500 hidden

units)

11.6 105 – 100

8.9 1050 – 1000

Standard mixture (10

experts, 50 hidden units

per expert and 150 units

for the gater)

11.6 124 – 65

9.1 290 – 150

Hard mixture, local gater

(20 experts, 25 hidden

units per expert and 20

Gaussians per Pθ(x|k))

10.9 21 1.3 15

Table 6.2. Comparison of performance on the Forest data set between

MLPs, a standard mixture, and a hard mixture of MLPs with “local” gater

trained with Algorithm 6.2.

in a short time when using sequential training (on only one computer). More

impressively, we can obtain the same results in a much shorter time if we

use parallelization (one computer per expert). Note however that it did not

performed as well as the hard mixture with a global gater. Figure 6.3 shows

the importance of the iterative process of our model for the training as well

as generalization error, as previously shown for the hard mixture with global

gater.

We performed one more experiment to compare the hard mixtures with

global and local gaters in terms of training time. The experiment was performed

on the Forest database, and the hyper-parameters were chosen to obtain good

generalization results in both cases. The hard mixture with local gater had

20 experts, 25 hidden units per expert and 20 Gaussians per local gater. The

hard mixture with global gater had 20 MLP experts, and an MLP gater with

150 hidden units. The hard mixture with global gater trained for more than

30 minutes to obtain a generalization error comparable to the hard mixture

with local gater after training for only 1.3 minutes, as shown in Table 6.2.

At first glance it seems that the training time bottleneck caused to the gater

disappeared thanks to the hard probabilistic mixture. However, the hard mixture

with a global gater was able to yield better generalization results, as with SVMs

experts in Table 6.1.
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Figure 6.3. Evolution of the negative log-likelihood with the number of

iterations for the hard mixture with “local” gater, on the Forest database. The

mixture has 20 MLP experts (25 hidden units, 20 Gaussians per local gater).

SVM Experts

Similar experiments were performed on the Forest database with the hard mix-

ture with “local” gater, but using SVMs plus a logistic regressor (as proposed

by Platt, 1999b) as probabilistic experts, rather than MLPs. Therefore, given

the SVM output fθ(x), we consider the conditional probability

Pa,w(y|x) =
1

1 + exp(a− y w fθ(x))
,

and we train the parameters a ∈ R and w ∈ R by minimizing the conditional

negative log-likelihood over the training set

L(a,w) = −
L∑

l=1

log Pa,w(yl|xl) . (6.10)

The training is very fast, because there are only two parameters to train. Equa-

tion (6.10) allows us to interpret the output of the SVM fθ(x) as a conditional

probability Pa,w(y|x). We thus can use the hard mixture with local gater (given

in Algorithm 6.2) with SVM experts. Table 6.3 shows the best result (in terms

of generalization error) obtained on the Forest database. Results are not as

good (in time and generalization performance) as the hard MLP mixture with

REF J. C. Platt. Probabilistic outputs for support vector machines and comparison to

regularized likelihood methods. In Smola, Bartlett, Schölkopf, and Schuurmans, editors,

Advances in Large Margin Classifiers, pages 61–73. MIT Press, 1999b.
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Model Test Time (minutes) Iteration

Error (%) 1 CPU Parallel

20 SVM experts and 10

Gaussians per Pθ(x|k)
10.7 2240 157 16

Table 6.3. Performance of the hard mixture with local gater, using SVMs

experts and Gaussian mixtures models for the gaters. Result on the Forest

database.

a local gater in Table 6.2. This could be explained by the fact that the MLP

experts are always trained in a stochastic way, starting from the previous iter-

ation of the mixture algorithm. In the end, they “see” more training examples

than the SVM experts which are retrained “from scratch” at each iteration.

Global or Local?

The generalization performance of a hard mixture with a local gater were

in all cases worst than what we obtained with a global gater, especially with

SVM experts. Obviously, a local gater is much less powerful than a global

gater for re-distributing examples to the experts. Moreover even if we were

able to obtain reasonable generalization results using the hard mixture with a

local gater in a short time, we must admit that tuning the Gaussian Mixture

Models in the local gater is very tricky compared to the tuning of the MLP

global gater. In the end, the global gater seems to be the way to go...

A Note on Training Complexity

For hard mixtures with both global and local gaters, suppose that we choose

the number of experts K such that the number of examples per expert M =

L/K is a fixed fraction of the total number of examples. Then, if we suppose

that the training time for one expert is polynomial of order p with the number

of examples M , the training time for training the experts in one outer-loop

iteration of the hard mixtures becomes on the order of:

O(KMp) = O(LMp−1) = O(L) .

If the gater is not localized (as in Algorithm 6.1), then it may be a bottleneck.

In the experiments we proposed, we did not measure the cost of training the

gater, but as it was an MLP, it was most likely greater than O(L), even though

our experiments showed the training time of the hard mixture to scale linearly

with L.
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Contributions

This chapter is a synthesis of the following published papers:

• R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for

very large scale problems. Neural Computation, 14(5):1105–1114, 2002a .

In this paper, we introduced for the first time the notion of “hard” mix-

ture of experts, and proposed training Algorithm 6.1 with a “global”

gater. At this time the goal was to find a way to train SVMs on large

databases. Indeed, SVMs are a very “fashioned” algorithm, but known

to be intractable on large training sets. Therefore, we proposed in this

paper experiments with hard mixtures of SVMs.

• R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for

very large scale problems. In T.G. Dietterich, S. Becker, and Z. Ghahra-

mani, editors, Advances in Neural Information Processing Systems, NIPS

14, pages 633–640. MIT Press, 2002b .

This paper is very similar to the previous one, with a few more details,

and some experiments on another realistic database, to validate another

time the algorithm in practice.

• R. Collobert, Y. Bengio, and S. Bengio. Scaling large learning problems

with hard parallel mixtures. International Journal on Pattern Recognition

and Artificial Intelligence (IJPRAI), 17(3):349–365, 2003 .

In this paper, we proposed the hard mixture of experts with a “local”

gater and Algorithm 6.2. We also added experiments with MLP experts,

in addition to the ones with SVM experts.

Note that in this chapter, we extended Algorithm 6.1 to a probabilistic frame-

work. We also made a clear link between the hard mixture with “global” gater

and the one with a “local” gater in this probabilistic framework.

Conclusion

In this chapter we have presented new divide-and-conquer parallelizable

hard mixture algorithms to reduce the training time of algorithms such as

SVMs. Very good results were obtained compared to classical SVMs both in

terms of training time and generalization performance on a real life database.

Moreover, the algorithms scale linearly with the number of examples, at least

in the ranges we presented. Both an algorithm with a global gater (that is
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where the gater is trained on the whole training set) and a local gater (where

the local gaters are trained on the same subset as their corresponding expert)

were presented, with a demonstration that in a probabilistic framework they

actually minimize a well-defined criterion.

These results are extremely encouraging and suggest that the proposed

method could allow training SVM-like models for sets of data on the order of

millions in a reasonable time. In the experiments, two types of “gater” models

were proposed, one based on a single MLP (for the mixture with a global

gater), and the other based on local Gaussian Mixture Models (for the mixture

with a local gater). The latter has the advantage of being trained very quickly

and locally to each expert, thereby guaranteeing linear training time for the

whole system (per iteration). However, the best results are obtained with the

MLP gater. Surprisingly, even faster results (with similar generalization) are

obtained if the SVM experts are replaced by MLP experts. If training of the

MLP gater with stochastic gradient descent grows less than quadratically in

time (as we conjecture it to be the case for very large data sets, to reach a

“good enough” solution), then the whole method is clearly sub-quadratic in

training time with respect to the number of training examples.

Finally, “hard” mixtures have one significant drawback: the number of

hyper-parameters is quite large. Hyper-parameters exist for the experts, for the

gater, and for local and global training algorithms of the mixture. In practice,

tuning a mixture of experts is a nightmare. Thus, in the next chapter, we will

focus on MLPs, which are much easier to use in practice. MLPs are also less

resource consuming than the SVMs studied in Chapter 5, and are more suitable

for large scale problems. However, we have raised some optimization issues in

MLPs. Indeed, we observed performance differences between an MLP trained

with the MSE criterion, an MLP trained with the CE criterion, and mixtures

of experts. We will try to give an explanation of these differences, which could

help us to find better ways to train MLPs.



7 Optimization for MLPs

Optimization by gradient descent is widely used by various machine learn-

ing algorithms such as back-propagation in Multi Layer Perceptrons (MLPs),

Radial Basis Functions (see Bishop, 1995) or Mixture of Experts (MoEs). Sev-

eral researchers proposed various enhancements (see LeCun et al., 1998) to

gradient descent, but this technique remains a first order technique: it only

uses the local gradient of the cost to minimize, as described in Chapter 3.

Many finer methods, based on a second order approximation of the cost exist,

as reviewed by Battiti (1992). Most of them, such as the original Newton

method, but also Quasi-Newton, Gauss-Newton, Levenberg-Marquardt and

Natural Gradient (introduced by Amari, 1998) methods need to compute the in-

verse of the Hessian (or an approximation of it). Using the Sherman-Morrison-

Woodbury (Sherman and Morrison, 1949 and Woodbury, 1950) formula to com-

pute iteratively this inverse (for details, see Bottou, 1998), the time and space

complexities of the resulting algorithms grow in O(M2) per iteration, where

M is the number of parameters. Thus, these algorithms are not well suited

REF C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

REF Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In G.B. Orr

and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

REF R. Battiti. First and second-order methods for learning: Between steepest descent and

Newton’s method. Neural Computation, 4(2):141–166, 1992.

REF S. Amari. Natural gradient works efficiently in learning. Neural Computation, 14(2):

251–276, 1998.

REF J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to

changes in the elements of a given column or given row of the original matrix. Annals of

Mathematics and Statistics, 20:621, 1949.

REF M. A. Woodbury. Inverting modified matrices. Technical Report Technical Report 42,

Statistical Research Group, Princeton University, 1950.

REF L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.
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for very large data sets and models. Some improvements have been proposed,

such as the Stochastic Meta Descent method (Schraudolph, 2002), which pro-

poses a method to compute iteratively the product of a vector and the inverse

of the Hessian, with O(M) time and space complexities. However, in practice

these methods are too complex to implement, and most people rely on gradient

descent or stochastic gradient descent. As a consequence, instead of dealing

with the Hessian during training as several other methods do, in this chapter

we propose to study the Hessian of the cost function before training. This will

also help us to understand differences in performance observed in Chapter 6

on several similar gradient-based models. Note that because we suspect some

optimization issues in MLPs, we will only consider training performance in this

chapter.

Framework Definition

We consider in this chapter the two-class classification problem defined

in Chapter 3. We focus on two important models presented in Chapter 3

as well. We give a short reminder of the notation here, for convenience. First,

we are interested in MLPs with one hidden layer and N hidden units, defined

by

fθ(x) = b+
N∑

n=1

wn h(vn · x) , (7.1)

where h is a transfer function (the hyperbolic transfer function for our exper-

iments). Here (w, b) ∈ RN+1 are the output weights, and vn ∈ Rd+1 × R
represents the weights of the n-th hidden unit. To simplify the notation, we

suppose that the last coordinate of an input example x is 1, which implies that

the bias of the n-th unit is represented by the last coordinate of vn.

We will also consider a certain class of MoEs, defined by the following

decomposition with K experts:

fθ(x) =
K∑

k=1

gθ,k(x) fθ,k(x) , (7.2)

under the conditions

K∑
k=1

gθ,k = 1 and gθ,k ≥ 0 ∀k . (7.3)

REF N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient

descent. Neural Computation, 14(7):1723–1738, 2002.
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The function fθ,k is the output of the k-expert, which will be an MLP as

described by (7.1), in this chapter. The gater gθ(·) = {gθ,1(·), . . . , gθ,K(·)} is

taken as an MLP as well, with soft-max outputs, as described in Chapter 3.

Training

As presented in Chapter 3, we consider the training of MLPs and MoEs by

minimizing the empirical risk

J : θ 7→ 1
L

L∑
l=1

Q((xl, yl), fθ) , (7.4)

using stochastic gradient descent, and given a criterion Q. We focus on the

Mean Squared Error (MSE) criterion defined with

Q((x, y), fθ) =
1
2

( y − fθ(x) )2 ,

and on the Cross-Entropy (CE) criterion given by

Q((x, y), fθ) = log(1 + exp(−y fθ(x))) .

We will also consider the training of an MLP (7.1) with an added hyperbolic

tangent at the output, which is equivalent to use the criterion

Q((x, y), fθ) =
1
2

( y − tanh(fθ(x)) )2 . (7.5)

Preliminary Experiments

In order to highlight the optimization problems we suspected from the train-

ing of MLPs in Chapter 6, we performed a preliminary comparison (see Ta-

ble 7.1) of training performance of several architectures on the Forest and the

Connect-4 databases presented in Chapter 4. We considered several MLPs

trained with different criteria and a MoE trained using the MSE criterion. The

number of hidden units of the MLPs was chosen to obtain the best training per-

formance with the MSE criterion. We were not able to reduce the training errors

by adding more hidden units to MLPs trained with the MSE criterion. Apart

from the MLP number of hidden units, all other hyper-parameters were chosen

to maximize the training performance for each model. The hyper-parameters of

the mixtures were chosen such that the mixtures had slightly fewer parameters

than the MLPs.

The fact that, on these two data sets, an MLP trained with the CE criterion

leads to significantly better training performance than an MLP trained with
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Architecture
Train Err. (%)

Forest Connect-4

MLP+MSE 11.6 6.0

MLP+Tanh+MSE 7.1 1.4

MLP+CE 4.4 0.0

MoE+MSE 4.0 0.2

Table 7.1. Training errors (on the Forest and Connect-4 databases) for

several architectures: an MLP trained with the MSE and CE criteria, an MLP

with a hyperbolic tangent output trained with the MSE criterion, and a MoE

trained with the MSE criterion. All MLPs had 500 hidden units. The mixture

hyper-parameters were chosen such that the mixtures had less parameters than

MLPs.
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Figure 7.1. Comparison of the training error (in %) with respect to the

number of iterations over the training set for several architectures: an MLP

trained with the MSE and CE criteria, an MLP with a hyperbolic tangent

output trained with the MSE criterion, and an MoE trained with the MSE cri-

terion. All MLPs had 500 hidden units. The hyper-parameters of the mixtures

were chosen such that the mixtures had less parameters than MLPs. Results

are shown on the Forest database in (a) and on the Connect-4 database in (b).
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Figure 7.2. Training error (in %) with respect to the number hidden units

for an MLP trained with the MSE criterion on the Forest database (a) and on

the Connect-4 database (b).

the MSE criterion (in much less time as shown in Figure 7.1), and that it is not

possible to decrease the classification error by adding hidden units (see Fig-

ure 7.2), clearly denotes an optimization issue with the MLP trained with the

MSE criterion. Indeed, MLPs with one hidden layer are universal approxima-

tors, as pointed out in Chapter 3. It should be possible, with enough hidden

units, to reduce the training error to zero. Here, we are clearly under-fitting

at least with the MSE criterion. This is a serious problem, because as shown

in Chapter 2, under-fitting can imply bad generalization performance. The fact

that, in Chapter 6, the MLP with the MSE criterion leads to worse general-

ization performance than the MLP with the CE criterion could be explained

because we are much more under-fitting when using the MSE criterion than

when using the CE criterion. However, it seems that the MSE criterion is not

solely responsible for this problem, as the mixtures trained with MSE criterion

lead to better results. Simply adding a hyperbolic tangent to the output of the

MLP seems to improve the training performance.

A Local Cost Study

In order to understand these differences of performance, we propose to

study the local behavior (with respect to the parameters θ) of each model and

its corresponding cost function. Given a model fθ(·) where we want to optimize

the parameters θ, the “stochastic” version of cost function (7.4)

Jx,y(θ) = Q((x, y), fθ)
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can be approximated with respect to θ around θo, using a second order Taylor

expansion:

Jx,y(θ) = Jx,y(θo)

+ (θ − θo)T ∂Jx,y(θo)
∂θ

+
1
2
(θ − θo)T Hx,y(θo) (θ − θo)

+ o(‖θ − θo‖22)

(7.6)

where ∂Jx,y(θo)/∂θ and Hx,y(θo) are the gradient vector and the Hessian

matrix of Jx,y with respect to θ evaluated at θo, respectively. We use ‖.‖2 as

the Euclidean norm for vectors, and o(‖θ−θo‖22) to represent a term negligible

with respect to ‖θ − θo‖22 . Remember that if we write θ = (θ1, θ2 . . . ), then

the coefficient (i, j) of the Hessian matrix of the function Jx,y is equal to

Hi,j
x,y =

∂Jx,y

∂θi ∂θj
.

It is obvious that if we want the stochastic gradient descent to work, then the

first derivative should be non zero for a given misclassified example (x, y). It

is also known that the Hessian is important as well, and related to the time

of convergence as shown by (LeCun et al., 1991). Thus, we will first consider

the Hessian in a general way, and then show that in the particular case of a

block-diagonal Hessian, the training problem is much simpler than for a full

Hessian.

The Advantage of a Block Diagonal Hessian

Let us consider a model fθ(·) where the parameter vector θ can be segmented

into several sub-vectors θ = (θ1, θ2 . . .θM ). Given the current state θo, and if

we ignore negligible terms with respect to ‖θ − θo‖22 , then the local quadratic

approximation (7.6) can be rewritten as:

Jx,y(θ) = Jx,y(θo)

+
∑

i

(θi − θo
i )T ∂Jx,y(θo)

∂θ

+
∑
i,j

1
2
(θi − θo

i )T Hi,j
x,y(θo) (θj − θo

j ) ,

(7.7)

REF Y. LeCun, I. Kanter, and S. Solla. Second order properties of error surfaces: learning

time, generalization. In R. P. Lippman, J. M. Moody, and D. S. Touretzky, editors, Advances

in Neural Information Processing Systems 3, pages 918–924, Denver, CO, 1991. Morgan

Kaufmann.
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where Hi,j
x,y is the matrix

∂2Jx,y

∂θi ∂θj
,

using vectorial derivation.

Truly Block-Diagonal Hessian

In the ideal case where Hx,y is truly block-diagonal, that is if Hi,j
x,y = 0 for

i 6= j, this leads to

Jx,y(θ) = Jx,y(θo) +
∑

i

J i
x,y(θi) (7.8)

where

J i
x,y(θi) = (θi − θo

i )T ∂Jx,y(θo)
∂θi

+
1
2
(θi − θo

i )T Hi,i
x,y(θo) (θi − θo

i ) .

Equation (7.8) shows that the error function Jx,y(θ) can be split into M in-

dependent error functions J i
x,y(θi). In other words, the optimization of a sub-

vector θi is locally independent of the others. Therefore, the optimization

problem is much simpler than with a full Hessian where the modification of

one parameter would affect the modification of the others.

Almost Block-Diagonal Hessian

If Hx,y is not truly block-diagonal, one can still compute the difference between

the true local cost Jx,y and the approximation given by (7.8) around θo :

‖Jx,y(θ)− Jx,y(θo) +
∑

i

J i
x,y(θi)‖2 = ‖1

2

∑
i 6=j

(θi − θo
i )T Hi,i

x,y(θo) (θi − θo
i )‖2

≤ 1
2

∑
i 6=j

‖Hi,j
x,y(θo)‖2 ‖θi − θo

i ‖2 ‖θj − θo
j‖2 ,

where ‖ · ‖2 denotes the spectral norm of a matrix (note that it corresponds

here to the maximum eigenvalue of the matrix, the Hessian being symmetric).

Thus, as the spectral norm ‖Hi,j
x,y‖2 of the blocks of the Hessian outside the

diagonal tends to zero, equation (7.8) becomes more accurate, and the training

of each sub-vector θi becomes more independent. Generally speaking, the more

block-diagonal the Hessian, the easier it is to train the model.

A Second Order Method

Choosing an architecture before training which leads to a block-diagonal Hes-

sian may lead to more easily trained models. This can be viewed as a kind
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of second order method: instead of computing the Hessian during training as

many methods do, we can consider it before training. Indeed, we will show in

the next section that for common models, simple changes in the architecture

can strongly affect the Hessian.

Illustration

We will now illustrate the above concepts on the architectures we proposed

in the preliminary experiments, summarized in Table 7.1. We will analyze the

gradient of the cost for each situation. We also propose a mathematical analysis

of the “instantaneous” Hessian Hx,y, as well as an empirical evaluation of the

“total” Hessian

H =
1
L

L∑
l=1

Hxl,yl
(7.9)

of the cost function (7.4) (which is what we would really like to minimize).

MoEs and MSE Criterion

Let us first consider the mixture of MLPs fθ(x) =
∑K

k=1 gk(x) fk(x) as given

by (7.2). If we introduce ui as the weight vector of the expert fi, then using

the MSE criterion, the gradient of the cost can be computed as follows

∂Jx,y

∂ui
= −(y − fθ(x)) gi(x)

∂fi(x)
∂ui

.

The gradient behaves as we would like: the first term (y − fθ(x)) is non-null

when the example (x, y) is misclassified. At least one gater output gi(x) is

always non-null because the gater outputs must sum to one. Hence, at least

one expert will always receive some gradient when the example is misclassified.

Furthermore, the instantaneous Hessian outside the block-diagonal (one

block for each pair of experts (i, j)) becomes:

∂2Jx,y

∂ui ∂uj
= gi(x) gj(x)

∂fi(x)
∂ui

(
∂fj(x)
∂uj

)T

(i 6= j) . (7.10)

Note that the underlying idea of MoEs is to partition the input space using

a gater, in which case a given example would be handled by only one expert.

Thus, in the ideal case, given an example (x, y), all but one gi(x) should be

near zero. To verify this, we computed the average of the product gi(x) gj(x)

over the training set on the Forest data set, and over all pairs of distinct

gater outputs (i 6= j), with respect to the number of training iterations, as

shown in Figure 7.3a. It is clear that the product gi gj tends to be very small
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Figure 7.3. Block-diagonality of the Hessian matrix. Figure (a) shows that

the term gi(x) gj(x) (i 6= j), which appears in the Hessian equation outside

the block-diagonal, tends to very small values on average during training. This

is performed on 100,000 examples of the Forest data set, with 10 experts, 25

hidden units per expert and 100 hidden units for the gater. Figure (b) is a

description of the Hessian matrix; each block corresponds to a pair of experts,

and is represented by its spectral norm. The color of each block is associated

with the corresponding value in the right column. This has been computed with

10,000 examples from the Forest data set, after 5 iterations with 5 experts, 10

hidden units per expert, and 25 hidden units for the gater.

in practice, and thus the Hessian (7.10) converges to zero outside the block-

diagonal. To further verify this assertion, we also computed the spectral norm

in Figure 7.3b ∥∥∥∥ ∂2Jx,y

∂ui ∂uj

∥∥∥∥
2

for each block (i, j) of the total Hessian (7.9) after few training iterations. We

see that the Hessian quickly becomes diagonal during training. Hence, the

optimal weights of an expert i do not depend locally on the optimal weights of

an expert j 6= i, early in the training. The optimization problem is broken into

several smaller ones, which simplifies the problem.

MLPs With MSE and CE Criteria

Let us now focus on the case of MLPs as given by (7.1) trained with the MSE

and CE criteria. The first derivative of the instantaneous cost Jx,y is

∂Jx,y

∂vi
= −(y − fθ(x))wi h

′(vi · x) x
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for the MSE criterion, and

∂Jx,y

∂vi
= −Pθ(−y|x)wi h

′(vi · x) x (7.11)

for the CE criterion, where Pθ(y|x) is given using the relation

Pθ(y|x) =
1

1 + exp(−y fθ(x))
,

from the definition of the CE criterion, as explained in Chapter 3. Note that

given a misclassified example (x, y) the first term will be non-null (either (y−
fθ(x)) or Pθ(−y|x)). Thus, if the initial values of the output layer satisfy

wi 6= 0∀i, all hidden units should receive a gradient.

If we now compute the Hessian derived from the MSE criterion using a

vector notation, outside the block-diagonal we have:

∂2Jx,y

∂vi ∂vj
= wi wj h

′(vi · x)h′(vj · x) x xT (i 6= j) . (7.12)

Note that there is no obvious reason for this Hessian to tend to zero. If we

compute the Hessian with the CE criterion we get:

∂2Jx,y

∂vi ∂vj
= Pθ(y|x)Pθ(−y|x)wi wj h

′(vi · x)h′(vj · x) x xT (i 6= j) .

Here the term Pθ(y|x)Pθ(−y|x) = Pθ(y|x)(1 − Pθ(y|x)) will tend quickly

to zero, since we are training the MLP to maximize Pθ(y|x). This is veri-

fied in practice, as shown in Figure 7.4a. This term will push the Hessian

obtained with the CE criterion toward block-diagonality (one block for each

unit) (see Figure 7.4b), whereas the Hessian obtained with the MSE criterion

remains full, as shown in Figure 7.5. This can explain the difference perfor-

mance obtained in our preliminary comparison given in Table 7.1: when using

the CE criterion, the minimization of the cost function is locally more simpler

than when using the MSE criterion. Indeed, the landscape of the cost function

with respect to the weights of a unit i is almost independent on a different unit

j, using the CE criterion.

MLPs With Tanh Output and MSE criterion

It is commonly known that adding a hyperbolic tangent to the output layer of

the MLP proposed in (7.1) may improve the training performance, as verified

by our experiments shown in Table 7.1. As previously stated, it is equivalent

to train the MLP (7.1) using the criterion (7.5). The gradient of the local cost

Jx,y is easily given by

∂Jx,y

∂vi
= −(y − z) (1− z2)wi h

′(vi · x) x , (7.13)
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Figure 7.4. Block-diagonality of the Hessian matrix of an MLP trained

with the CE criterion. Figure (a) shows that the term Pθ(y|x)Pθ(−y|x), which

appears in the Hessian equation outside the block-diagonal, tends to very small

values on average during training. This is performed on the Forest data set,

with 100,000 training examples and 200 hidden units. Figure (b) is a description

of the Hessian matrix with 10 hidden units; each block corresponds to a pair

of hidden units, and is represented by its spectral norm. The color of each

block is associated with the corresponding value in the right column. It has

been computed on the Forest data set with 10,000 training examples, after one

iteration.
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Figure 7.5. Hessian matrix for an MLP with 10 hidden units trained with

the MSE criterion. Each block corresponds to a pair of hidden units, and is

represented by its spectral norm. The color of each block is associated with the

corresponding value in the right column. It has been computed on the Forest

data set with 10,000 training examples, after 10 iterations.
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Figure 7.6. Block-diagonality of the Hessian for an MLP trained with

the MSE criterion and hyperbolic tangent outputs. Figure (a) shows that

the coefficient c(z) involved in the Hessian tends to zero when the output

z = tanh(f(x)) tends to ±1. Figure (b) shows that the average over the

training examples of the absolute value of the coefficient c(z) decreases during

training. Figures (a) and (b) have been computed on the Forest database with

500 hidden units and 100,000 training examples.

where we denote

z = tanh(fθ(x)) (7.14)

to simplify the notation, and using the fact that tanh′(·) = 1− tanh(·)2. Each

block of the Hessian outside the block-diagonal can then be written as follows:

∂2Jx,y

∂vi ∂vj
= (1−z2)(1+2z y−3z2)wi wj h

′(vi ·x)h′(vj ·x) x xT (i 6= j) . (7.15)

Note the difference between the Hessian in (7.15) and the Hessian obtained

when training an MLP without the hyperbolic tangent output in (7.12) is

simply the coefficient

c(z) = (1− z2)(1 + 2z y − 3z2) .

We plotted this coefficient with respect to z in Figure 7.6a for the case of

y = 1, and for a range of z values between −1 and 1. This corresponds

to the values the hyperbolic tangent can take in (7.14). It is interesting to

note that this coefficient tends to zero when z = tanh(f(x)) tends to ±1.

As we are training the MLP for this purpose, c(z) will tend to small values

during training, as shown in Figure 7.6b. Once again, the Hessian will tend

to have small values outside the block-diagonal. Note, however, that there is

a drawback when z tends to ±1: the first derivative (7.13) will decrease, in
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particular for misclassified examples, due to the coefficient 1−z2. However, for

an MLP with a CE criterion, the first derivative (7.11) is (in general) small only

for well-classified examples. Even if the hyperbolic tangent output improves

training results for an MLP with the MSE criterion, we could expect better

results in general with the CE criterion, as shown in Table 7.1.

Contributions

This content of this chapter was first published in the following paper:

R. Collobert and S. Bengio. A gentle hessian for efficient gradient descent.

In IEEE International Conference on Acoustic, Speech, and Signal Processing,

ICASSP, 2004a.

In this chapter, we expanded on details in the derivations, added an illustration

of our theory with a certain class of mixture of experts, and introduced more

figures. The application to MLPs of the “margin criterion” coming from SVMs,

was postponed until Chapter 8.

Conclusion

In this chapter we highlighted some under-fitting problems while training

certain large models with gradient descent. Under-fitting problems are quite

serious, because they prevent good generalization performance, as seen in Chap-

ter 2. We thus analyzed gradient descent algorithms with respect to a local

study of the minimized cost function. In particular, we pointed out that the

Hessian matrix plays a major role in the effectiveness of any gradient descent al-

gorithm. We showed, both empirically and theoretically, that a block-diagonal

Hessian should yield more efficient training algorithms. Based on several com-

mon models, we pointed out that the choice of model architecture influences

the Hessian matrix. In particular, we explained why the CE criterion should be

selected for classification problems instead of the more classical MSE criterion

when training MLPs. We also explained why MoEs may lead to better results

than MLP trained with the MSE criterion. Our analysis can now be used to

create models more well adapted to gradient descent. Finally, while efficient

optimization is important, it is not sufficient to obtain good generalization per-

formance: the ultimate goal of machine learning. Thus, we will now focus on

what may help machine learning algorithms to generalize. We will consider

the margin idea introduced in the SVM algorithm, which is known to improve

generalization performance.
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8 A Margin for Everyone

Since the Perceptron algorithm proposed by Rosenblatt (1957), several ma-

chine learning algorithms have been proposed for classification problems, as

already introduced in Chapter 3. Among them, two algorithms had a large im-

pact on the research community. The first one is the Multi Layer Perceptron

(MLP), which became useful with the introduction of the back-propagation

training algorithm by LeCun (1985) and Rumelhart et al. (1986). The second

one, proposed more recently, is the Support Vector Machine (SVM) algorithm

proposed by Vapnik (1995). SVMs supplied the large margin classifier idea,

often referred to as a key point for improving generalization performance for

binary classification tasks, following Vapnik’s claim. We propose comparing

Perceptrons, MLPs and SVMs in this chapter, according to their generalization

ability, which is the main concern of machine learning, as highlighted in Chap-

ter 2. As the margin idea introduced in SVMs appears to be a nice way to

control the generalization ability, we will try to give a better understanding of

Perceptrons and MLPs through the lens of the SVM margin.

REF F. Rosenblatt. The perceptron: a perceiving and recognizing automaton. Technical

Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, N.Y., 1957.

REF Y. LeCun. A learning scheme for asymmetric threshold networks. In Proceedings of

Cognitiva 85, pages 599–604, Paris, France, 1985.

REF D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-

tions by back-propagating errors. In D.E. Rumelhart and J. L. McClelland, editors, Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, volume 1, pages

318–362. MIT Press, 1986.

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.
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Framework Definition

Once again, we consider the two-class classification problem defined in Chap-

ter 3. We focus on Perceptrons (and their Φ-Machine extension), MLPs and

SVMs which were already defined in Chapter 3. However, we want to first give

a rapid overview of these models in the same framework, in order to show how

close they are. The decision function fθ(.) of all these models can be written

in its general form as

fθ(x) = w · Φ(x) + b , (8.1)

where w is a real vector of weights and b ∈ R is a bias. The generic vector

of parameters θ represents all the parameters of the decision function (that

is, w, b, and all parameters of Φ, if any). For Φ-machines and SVMs, Φ

is an arbitrarily chosen function; in the special case of Φ(x) = x, it leads

respectively to Perceptrons and linear SVMs. We also consider MLPs with

one hidden layer and N hidden units. In that case the hidden layer can be

decomposed as Φ(·) = (Φ1(·), Φ2(·), . . . , ΦN (·)), where the n-th hidden unit is

described with

Φn(x) = h(vn · x+ an) . (8.2)

Here (vn, an) ∈ Rd × R represents the weights of the n-th hidden unit, and

h is a transfer function which is usually a sigmoid or a hyperbolic tangent.

Note that the hyperspace defined with {Φ(x), x ∈ Rd} will be called “feature

space”, or sometimes “hidden layer space” in the special case of MLPs.

SVM Training

We already showed in Chapter 3 that SVMs aim at minimizing the cost

J : (θ, ξ) 7→ µ

2
‖w‖2 +

1
L

L∑
l=1

ξl (8.3)

under the constraints

∀l ∈ {1 . . . 2L} ϕl(θ, ξ) ≤ 0 , (8.4)

where

∀l ∈ {1 . . . L}

{
ϕl(θ, ξ) = −ξl
ϕL+l(θ, ξ) = 1− ξl − yl fθ(xl) .

(8.5)

By noticing that

∀l, |1− yl fθ(xl)|+ = max(0, 1− yl fθ(xl))

= min{ ξl / ξl ≥ 0, ξl ≥ 1− yl fθ(xl) } ,
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it appears that it is equivalent to minimize the cost function

θ 7→ µ

2
‖w‖2 +

1
L

L∑
l=1

|1− yl fθ(xl)|+ , (8.6)

where |z|+ = max(0, z).

Reminder of KKT Conditions

We showed in Chapter 3 that finding a minimum of (8.3) under the con-

straints (8.4) is achieved using a Lagrangian technique. In particular, according

to Appendix A, if (w, b, ξ) is a minimum of (8.3) it is necessary that Lagrange

multipliers (α, η) exist such that (w, b, ξ, α, η) satisfies the Karush-Kuhn and

Tucker (KKT) conditions, that we rewrite here for convenience:

w =
1
µ

L∑
l=1

αl yl Φ(xl)

L∑
l=1

αl yl = 0

αl [1− ξl − yl (w · Φ(xl) + b)] = 0 ∀l
1
L
− αl − ηl = 0 ∀l

ηl ξl = 0 ∀l

αl ≥ 0 ∀l

ηl ≥ 0 ∀l .

(8.7)

As the minimization problem (8.3) is convex with convex constraints (8.4), we

are also ensured that KKT conditions are sufficient. In other words, if we find

(w, b, ξ) such that the constraints (8.4) are satisfied, then if (α, η) exists such

that the KKT conditions (8.7) hold, it guarantees that (w, b, ξ) is a minimum

of the SVM problem.

Perceptron, Φ-machine and MLP Training

As presented in Chapter 3, the training of Perceptrons, Φ-machines and MLPs

is usually achieved with the minimization of the empirical risk

θ 7→ 1
L

L∑
l=1

Q((xl, yl), fθ) , (8.8)

using gradient descent until reaching a local optimum, given a criterion Q. We

focus here on stochastic gradient descent, which gives good results in time and
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training performance for large data sets (LeCun et al., 1998). Concerning the

criterion Q, we mentioned in Chapter 3 that the most often used ones are the

Mean Squared Error (MSE) and the Cross-Entropy (CE) criteria. We also

pointed out that from a probabilistic point of view, the CE criterion is more

suited for classification. Finally, according to Chapter 7, the CE criterion leads

to a simpler optimization problem than the MSE criterion. Thus, it is better

to choose the CE criterion for classification, which yields

Q((x, y), fθ) = log(1 + exp(−y fθ(x))) ,

in (8.8), according to derivations made in Chapter 3. In order to avoid over-

fitting, we also highlighted that two methods are often used while training

MLPs: either we perform early stopping (that is, we stop the training pro-

cess before reaching a local optimum) or we add regularization terms over the

parameters of the model, which leads to the minimization of

θ 7→ µ

2
‖w‖2 +

ν

2

N∑
n=1

‖vn‖2 +
1
L

L∑
l=1

log(1 + exp(−yl fθ(xl))) . (8.9)

Regularization is then controlled by tuning the weight decay parameters µ and

ν. Note that the second term is not present when training Perceptrons or Φ-

machines. Let us now point out that the CE criterion z 7→ log(1 + exp(−z))
used for MLPs is a “smooth” version of the “hard” margin criterion z 7→
|1 − z|+ used for SVMs, as shown in Figure 8.1. Moreover, it has been shown

recently by Rosset et al. (2004) that the use of the CE criterion was related

to the maximization of the margin. Thus, we make the assumption here that

the difference between the “smooth” and the “hard” criteria is not crucial to

understand the behavior of MLPs. We will therefore consider in the rest of this

chapter the “hard” version of the criterion. Hence, instead of minimizing (8.9),

we will consider the minimization of

θ 7→ µ

2
‖w‖2 +

ν

2

∑
n

‖vn‖2 +
1
L

∑
l

|1− yl fθ(xl)|+ . (8.10)

With this criterion, it appears obvious that Φ-machines are equivalent to SVMs

and Perceptrons are equivalent to linear SVMs. Only the training method re-

mains different: Perceptrons are trained by applying stochastic gradient descent

on (8.6), whereas SVMs are trained by minimizing a quadratic problem under

constraints, as shown in Chapter 5.

REF Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In G.B. Orr

and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

REF S. Rosset, J. Zhu, and T. Hastie. Margin maximizing loss functions. In S. Thrun,

L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16.

MIT Press, Cambridge, MA, 2004.
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Figure 8.1. The CE criterion z 7→ log(1 + exp(−z)) versus the margin

criterion z 7→ |1− z|+.

On Stochastic Gradient With Non-Differentiable Cost

Using the stochastic gradient method to minimize the cost (8.10) is debatable

because the function z 7→ |1− z|+ is not differentiable everywhere. We propose

to study this problem, using Theorem 3.2 stated by Bottou (1998) which proves

the convergence of the stochastic gradient descent method. Keeping the same

notations introduced for this theorem, we consider the stochastic update

θt+1 ← θt − λtGθ(xl, yl) ,

where we define here Gθ(·) as

Gθ(x, y) =


∂Q((x, y), fθ)

∂θ
if Q(·, fθ) is differentiable in (x, y)

0 otherwise .
(8.11)

We can now apply Theorem 3.2 if the assertion ii) remains true:∫
Gθ(x, y)P (x, y) d(x, y) =

∂R(fθ)
∂θ

, (8.12)

where P (x, y) is the true (unknown) distribution of the data and the expected

risk R(·) is defined by

θ 7→
∫
Q((x, y), fθ)P (x, y) d(x, y) ,

(where we removed the regularization terms in order to simplify notations) as

already introduced in Chapter 3. According to definition (8.11) and Lebesgue’s

REF L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.
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dominated convergence theorem, the validity of assertion (8.12) is ensured if

θ 7→ Q((x, y), fθ) (8.13)

is bounded by an integrable function and differentiable everywhere except for

a set of (x, y) of measure zero. This is the case for Perceptrons and MLPs

using the margin criterion (8.6), where (8.13) is only undifferentiable on the

manifolds defined by

w · Φ(x) + b = ±1 ,

i.e. on a set of measure zero. Thus, the expected risk remains differentiable

even if the “local” criterion Q is not differentiable everywhere. With an infinite

number of examples, Theorem 3.2 guarantees that stochastic gradient descent

minimizes the expected risk.

With a finite number of examples, if Q is not differentiable everywhere,

the empirical risk is not differentiable as well. We can no longer apply Theo-

rem 3.2 to the empirical risk, as we did in Chapter 3 using a counting measure.

Note that recently Ermoliev and Norkin (1997) proposed an extension of The-

orem 3.2 for a class of generalized differentiable functions. In particular, they

highlight the fact that compositions of differentiable functions with “min” and

“max” functions are generalized differentiable, which is the case in this chap-

ter. Unfortunately, their theorem requires the first derivative of the risk to be

bounded by a constant, which is not the case in general (except for the Simple

MLP algorithm that we propose at the end of this chapter). Thus, we cannot

say in general that the stochastic gradient descent method will converge to an

extremal point of the empirical risk. However, with “enough” training exam-

ples we are ensured to approach an extremal point of the expected risk (Bottou,

1998).

Note on the Original Perceptron Algorithm

Note that the original Perceptron algorithm as introduced by Rosenblatt (1957)

and presented in Chapter 3 is equivalent to using the criterion

Q((x, y), fθ) = | − y fθ(x)|+ , (8.14)

REF Y. M. Ermoliev and V. I. Norkin. Stochastic generalized gradient method with ap-

plication to insurance risk management. Technical Report IR-97-021, International Institute

for Applied Systems Analysis, 1997.

REF L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor,

Online Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

REF F. Rosenblatt. The perceptron: a perceiving and recognizing automaton. Technical

Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, N.Y., 1957.
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with stochastic gradient descent. Because of the definition of the algorithm

which updates the weights only if an example is misclassified, the hyperplane

found by the original Perceptron algorithm can be very close to the data. It is

thus not possible to talk about margins with this algorithm, and this algorithm

is therefore not our main interest in this chapter. Moreover, we will show that

it is not easy to control the generalization ability of this model: if we want to

add a regularization parameter ‖w‖2 in the cost (8.14) (as for other models)

which yields

θ 7→ µ

2
‖w‖2 +

1
L

L∑
l=1

| − yl (w · xl + b)|+ ,

it is easy to see that the minimization of this cost leads to a hyperplane with

zero weights. Indeed, if we apply the same derivations as for SVMs, it is easy

to see that the minimization of (8.1.2) is equivalent to minimizing

α 7→ αTKα

under the constraints

L∑
l=1

αl yl = 0 and 0 ≤ αl ≤
1
L
∀l ,

where the matrix K is given by

Klm = yl ym xl · xm .

The KKT conditions are the same as the one given for SVMs (8.7), except

αl [1− ξl − yl (w · Φ(xl) + b)] = 0 ∀l

which becomes

αl [−ξl − yl (w · Φ(xl) + b)] = 0 ∀l .

It is obvious that the KKT conditions are satisfied if all parameters are zero. A

regularization parameter with the original Perceptron algorithm is thus useless,

and we can only rely on early stopping for controlling the generalization ability

of the algorithm.

Stochastic Gradient With Weight Decay

We just showed that Φ-machines (respectively Perceptrons) trained with the

hard margin criterion (8.6) are equivalent to SVMs (respectively linear SVMs).

We pointed out that only the training method remains different: Perceptrons

are trained by stochastic gradient descent on (8.6), whereas SVMs are trained
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by minimizing a quadratic problem under constraints, as shown in Chapter 5.

Therefore, we would like to see what happens when training Perceptrons with

stochastic gradient descent, using what we know about SVMs. We will consider

the two main solutions used to control the generalization ability of a Perceptron;

first the use of a regularization term in the cost function (as for SVMs), and then

the use of early stopping instead. We first consider the use of a regularization

term in this section: we focus on the cost function (8.6) in the linear case,

which can be rewritten as:

(w, b) 7→ µ

2
‖w‖2 +

1
L

L∑
l=1

|1− yl (w · xl + b)|+ . (8.15)

For a given training example (xl, yl), the stochastic update for the weight

vector w is easily computed as:

w ←

{
(1− λµ) w + λ yl xl if yl (w · xl + b) ≤ 1

(1− λµ) w otherwise
(8.16)

given a learning rate λ. From (8.7), we know that the optimal w is a linear

combination of training examples. Therefore, the update (8.16) is equivalent

to the following update written in the dual space:

∀k, αk ←


(1− λµ)αl + λµ if k = l

and yl (w · xl + b) ≤ 1

(1− λµ)αk otherwise .

(8.17)

A study of stochastic gradient descent in the dual space has already been

presented by Kivinen et al. (2002), who re-discovered gradient descent in the

case of SVMs. However, we would like here to use the formulation (8.17) to

give a lower bound on the number of iterations needed to train a Perceptron

(or a linear SVM) with stochastic gradient descent. Let us consider now a

training example (xl, yl) which becomes useless at some point during training.

We note α?
l the value of its corresponding weight at this point of the training.

According to what we said in Chapter 3, αl has to be decreased from α?
l to

zero if it is not a support vector. Using (8.17), it appears that in the optimistic

case αl will be equal to

(1− λµ)L Ne α?
l

after Ne epochs over the whole training set. Thus, just dividing α?
l by two will

require Ne epochs, where Ne satisfies the equation

Ne log(1− λµ) = − log(2)
L

.

REF J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. In T. Di-

etterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing

Systems, volume 14, pages 785–792. MIT Press, 2002.
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For small values of λµ, an equivalent of Ne is therefore given by

Ne ∼
log(2)
Lλµ

.

With a similar analysis, if the l-th example is going to be misclassified, then it

has to be a support vector at bound, which means that its corresponding weight

αl has to be increased until reaching 1/L. In the optimistic case, according to

the update (8.16), we can compute (for Ne ≥ 1)

αl = λµ

Ne−1∑
i=0

(1− λµ)L i = λµ
1− (1− λµ)L Ne

(1− λµ)L
,

after Ne epochs over the whole training set (if αl is first initialized to 0). If αl

needs to reach 1/L, Ne has to satisfy the equation

Ne log(1− λµ) =
1
L

log
[
1− 1− (1− λµ)L

Lλµ

]
.

For small λµ we obtain an equivalent of the necessary number of iterations Ne

over the training set:

Ne ∼ −
log(λµ)
Lλµ

.

This leads to the following theorem:

Theorem 8.1 Training a Perceptron using a weight decay (or a linear SVM)

with stochastic gradient descent requires at least on the order of O( 1
Lλµ ) epochs

over the whole training set to reach the true solution.

Thus, when the learning rate λ and the weight decay parameter µ are small,

which is often the case, it quickly becomes computationally expensive to reach

the true SVM solution with stochastic gradient descent. A typical example is

given for λµ = 10−7 and L = 104, which requires at least 103 iterations (These

values correspond to the best generalization performance using 104 examples

on the Forest and Connect-4 databases presented in Chapter 4).

Stochastic Gradient With Early Stopping

We already highlighted that control of the generalization ability of a Per-

ceptron is usually achieved in two different ways: the use of a regularization

term in the cost function, and the use of early stopping. Early stopping halts

training before reaching a local optimum, usually according to an estimate

of the generalization error on a “validation” set. Let us now consider Per-

ceptrons trained (using stochastic gradient descent) by minimizing the cost
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function (8.15) without the regularization term:

(w, b) 7→ 1
L

L∑
l=1

|1− yl (w · xl + b)|+ . (8.18)

We will now show that in this framework the margin of a Perceptron can still

be controlled both by tuning the learning rate used in the gradient descent

procedure and by early stopping. As the margin size controls the capacity and

thus the generalization performance, as pointed out in Chapter 3, it gives a

justification for not using a regularization term.

Deriving stochastic gradient descent equations for the cost function in (8.18)

leads to Algorithm 8.1, that we call the “Margin Perceptron” algorithm. Note

Algorithm 8.1 Margin Perceptron Algorithm
Initialize w and b to zero

repeat

for l ∈ {1 . . . L} do

if yl (w · xl + b) ≤ 1 then

w ← w + λ yl xl

b← b+ λ yl

end if

end for

until termination criterion

that this algorithm is not new, and has even been proposed by Duda and Hart

(1973), as a variant of the original Perceptron training algorithm presented

in Chapter 3.

Linearly Separable Classes

We first want to consider this algorithm for case in which the classes in the

training set are linearly separable. We first consider the case where the bias b

is fixed to zero. In this case, we consider the separating hyperplane

x 7→ u · x (8.19)

such that yl (u · xl) ≥ 1 ∀l, which has the maximal margin ρmax = 2
‖u‖ . We

then derive equations similar to the well-known Novikoff theorem (1962) for

REF R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley & Sons,

New York, 1973.

REF A. B. J. Novikoff. On convergence proofs on perceptrons. In Polytechnic Institute

of Brooklyn, editor, Proceedings of the Symposium on the Mathematical Theory of Automata,

volume 12, pages 615–622, 1962.
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the original Perceptron convergence proof. We denote the weight vector of the

Perceptron after t updates in Algorithm 8.1 as wt, and the index of the example

updated at t as lt. First, we have

u ·wt = u ·wt−1 + λ ylt u · xlt

≥ u ·wt−1 + λ

≥ t λ .

(8.20)

Moreover, if we consider R the radius of the training data (that is, ‖xl‖ ≤
R ∀l ∈ {1 . . . L}), we have

‖wt‖2 = ‖wt−1‖2 + 2λ ylt wt−1 · xlt + λ2‖xlt‖2

≤ ‖wt−1‖2 + 2λ+ λ2R2

≤ t λ2 ( 2
λ +R2) .

(8.21)

Using (8.20) and (8.21), we obtain with the Cauchy-Schwarz inequality:

t λ ≤ u ·wt

≤ ‖u‖ ‖wt‖
≤ 2

ρmax
λ
√
t
√

2
λ +R2

(8.22)

which leads to an upper bound on the number of updates:

t ≤ 4
ρ2
max

(
2
λ

+R2

)
. (8.23)

This shows that the Margin Perceptron converges in a finite number of updates

for the linearly separable case, which has already been demonstrated (Duda and

Hart, 1973). However, if we introduce (8.23) into (8.21), we are able to compute

a lower bound on the margin ρ = 2
‖wt‖ found by the Margin Perceptron:

ρ ≥ ρmax
1

2 +R2 λ
. (8.24)

We can generalize this to the case of separating hyperplanes with biases by

performing the following substitutions in the previous equations

xl ←(xl, 1)

w ←(w, b)

u←(u, a) ,

(8.25)

REF R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley & Sons,

New York, 1973.
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where b is the bias of the Perceptron hyperplane and a is the bias of the maximal

margin hyperplane (8.19). Substituting (8.25) into (8.24) leads to

ρ =
2
‖wt‖

≥ 2√
‖wt‖+ b2

≥ 2√
‖u‖2 + a2

1
2 + (R+ 1)2 λ

.

(8.26)

Considering KKT conditions (8.7) (for a maximal margin hyperplane) applied

to a support vector (x+, y+) of the positive class and a support vector (x−, y−)

of the negative class (not at bounds), we can state

1− u · x+ − a = 0

1 + u · x− + a = 0 .
(8.27)

Combining equalities (8.27) and applying Cauchy-Schwarz inequality yields

|a| = 1
2
|u · (x+ + x−) |

≤ 1
2
‖u‖ (‖x+‖+ ‖x−‖)

≤ ‖u‖R .

Applying this bound to (8.26) allows us to state the following theorem:

Theorem 8.2 If the classes are linearly separable, the Margin Perceptron al-

gorithm will converge in a finite number of iterations, and its final margin ρ

will satisfy

ρ ≥ ρmax
1√

1 +R2

1
2 +R2 λ

.

Therefore, the smaller the learning rate, the larger the margin of the Percep-

tron. Note that Graepel et al. (2001) already established a relation between

the existence of a large margin classifier and the sparseness in the dual space

of the solutions found by the original Perceptron algorithm. Here, in the case

of the Margin Perceptron algorithm, we instead relate the margin found by the

Perceptron to the largest existing margin.

General Case

In the non-separable case, we would like to be able to control the margin (that is

ρ = 2
‖w‖ ), while minimizing the number of errors in the margin (8.18). SVMs

REF T. Graepel, R. Herbrich, and R. Williamson. From margin to sparsity. In T. K. Leen,

T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems,

volume 13, pages 210–216. MIT Press, 2001.
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control the trade-off between these two quantities through the weight decay

parameter µ in the cost function (8.15). By design, the Margin Perceptron

minimizes the number of errors in the margin through training iterations. Us-

ing (8.21) with (8.25), the evolution of the margin can be described using the

following theorem:

Theorem 8.3 After t updates, the margin ρt of the Margin Perceptron is

bounded by the following:

ρt ≥
2/λ√

t(2/λ+ (R+ 1)2)
.

Thus, the margin increases with small number of updates or a low learning rate.

As the number of updates and the learning rate control the margin, they also

control the generalization performance. Finally, since early stopping limits the

number of updates, Theorem 8.3 justifies early stopping. We give a practical

example of controlling the margin using the learning rate and the number of

updates in Figure 8.2. We also give an illustration in Figure 8.3 which clearly

shows the advantage of early stopping. Note that we give a comparison with the

original Perceptron algorithm Algorithm 3.1, which is much harder to control.

Indeed, because of the lack of the margin, the original Perceptron hyperplane

tends to be close to the data, and is thus not very robust to noise.

Extension to Non-Linear Models

Theorem 8.1 is still valid without restriction if we choose an arbitrary Φ

function which maps the input space into an arbitrary space, and if we consider

examples (Φ(xl), yl) instead of (xl, yl). Theorem 8.2 and Theorem 8.3 remain

valid as long as there exists a constant R ∈ R such as ‖Φ(xl)‖ ≤ R ∀l ∈
{1 . . . L}. Thus, if the constraint is respected, all results apply to Φ-machines

and non-linear SVMs, including SVMs with kernels (a kernel being an inner

product in an arbitrary space described by a function Φ, as stated in Chapter 3).

Extension to MLPs

We consider now the minimization of (8.10), where the function f is an MLP

with one hidden layer, described by (8.1) and (8.2). First, we introduce the no-

tion of margin in MLPs. As for SVMs, the MLPs minimization problem (8.10)

can be rewritten as the minimization of

J : (θ, ξ) 7→ µ

2
‖w‖2 +

ν

2

N∑
n=1

‖vn‖2 +
1
L

L∑
l=1

ξl (8.28)
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Figure 8.2. Practical examples of the control of the margin, with the Mar-

gin Perceptron algorithm. Figures (a) and (b) represent the margin ρ and

the validation error with respect to the learning rate λ respectively, (when the

number of updates is fixed). Figures (c) and (d) represent the margin ρ and the

validation error with respect to the number of updates t respectively, (when

the learning rate λ is fixed). Results were obtained with 200 training examples

on the Connect-4 database, averaged on 10 trials.
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Figure 8.3. Visual examples showing the evolution of the separating hy-

perplane and its margin during training with the Margin Perceptron. The goal

is to separate two classes: crosses (blue) and circles (red). We have added

some noisy crosses near (just below) the circles. Figures (a), (b) and (c) show

the hyperplane found with the original Perceptron algorithm until convergence

after 10, 40, and 60 updates of the parameters. It is not possible to control the

margin, and the hyperplane is not robust to noise. Figures (d)–(i) show the

hyperplane found by the Margin Perceptron algorithm, after 10, 40, 60, 120,

500, and 2000 updates of the parameters. Dashed lines represents the margin

of the hyperplane. Early stopping thus allows us to choose solution (g), which

is robust to noise.
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under the constraints

∀l ϕl(θ, ξ) ≤ 0 , (8.29)

where ϕl is defined as in (8.5). Even if J and the constraints ϕl are no longer

convex, the KKT constraints are still necessary for a minimum of (8.28) to

exist, as stated by Theorem A.1. Thus, if (θ, ξ) is a minimum of (8.28), there

exists (α, η) such that the KKT constraints are satisfied. The KKT conditions

are the same as SVM conditions (8.7), plus the following:

vn =
wn

ν

L∑
l=1

yl αl h
′(vn · xl + an) xl ∀n

L∑
l=1

yl h
′(vn · xl + an)αl = 0 ∀n .

(8.30)

Uniqueness of Lagrange Multipliers

Note that if (θ, ξ) is a minimum of (8.28), then the corresponding Lagrange

multipliers (α, η) which satisfy the KKT conditions are unique. This is due (as

stated by Theorem A.1) to the linear independence of the gradients ∂ϕl/∂{θ, ξ}
of the constraints (8.5). Indeed, in our case, for 1 ≤ l ≤ L, we have

∀k ∂ϕl

∂ξk
= −δlk and

∂ϕl

∂b
= 0 ,

(where δlk = 0 if k 6= l, and δlk = 1 if k = l) and

∀k ∂ϕL+l

∂ξk
= −δlk and

∂ϕL+l

∂b
= −yl 6= 0 ,

which guarantees the independence of the gradients.

Margin in the Hidden Layer Space

Let us consider an MLP which is an optimum of the minimization prob-

lem (8.28) under the constraints (8.29), with the output parameters (w?, b?)

and the hidden layer Φ? described with the optimal hidden weights v?
n and a?

n

by

Φ?
n(x) = h(v?

n · x + a?
n) .

As the KKT conditions of the MLP problem are necessary for the existence

of an optimum, there exists Lagrange multipliers (α?, η?) such that they are

satisfied. As KKT conditions of the SVM problem are a subset of KKT condi-

tions of the MLP problem, note that SVM KKT conditions are satisfied with

(α?, η?) for the weights (w?, b?) and the hidden layer Φ?. Thus, it appears
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Figure 8.4. The hyperbolic tangent function (Tanh) and the “hard” hy-

perbolic tangent function (HardTanh).

that (w?, b?) are the optimal weights for the SVM problem (8.6) using the

feature space described by Φ?. In other words, the optimal MLP maximizes

the margin in its hidden layer space.

Margin in the Input Space

We can give a margin interpretation of hidden layer units as well, if we first

perform another simplification: instead of using a hyperbolic tangent for the

transfer function h, we consider the following “hard” version of h (also drawn

in Figure 8.4):

h(x) =


−1 if x < −1

x if − 1 ≤ x ≤ 1

1 if x > 1 .

(8.31)

Note that the use of this transfer function still maintains the universal ap-

proximation property of MLPs, as shown by Hornik et al. (1989). One could

argue that we loose the smooth non-linearity of the hyperbolic tangent which

could reduce the approximation capabilities of MLPs, but in practice, it leads

to performance comparable to a standard MLP for the same number of hidden

units. Note that even if h(·) is undifferentiable in −1 and 1, Q(·, fθ) remains

differentiable almost everywhere, and we can justify stochastic gradient descent

using Theorem 3.2, as we did previously. Ignoring the non-differentiability in

REF K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2:359–366, 1989.
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−1 and 1, the first derivative of h(·) can be computed as follows:

h′(z) =

{
1 if |z| ≤ 1

0 otherwise .

Thus, given an optimal MLP, the sums in (8.30) consider only examples (xl, yl)

such that |v?
n · xl + a?

n| ≤ 1. Moreover, for these examples one can notice that

for the n-th hidden unit of the MLP we have

1− ξl − yl fθ(xl) = 1− ξl − yl

[
b+

N∑
m=1

w?
k h(v

?
m · xl + a?

m)

]

=

 1− yl

b+
∑
m6=n

w?
m h(v?

m · xl + a?
m)


− ξl − yl w

?
n h(v

?
n · xl + a?

n)

=

 1− yl

b+
∑
m6=n

w?
m h(v?

m · xl + a?
m)


− ξl − yl w

?
n (v?

n · xl + a?
n)

≤ 0 ,

knowing that ξl has to satisfy the constraint (8.29). By verifying KKT condi-

tions, the optimal weights (v?
n, a

?
n) given by the optimal MLP for the n-hidden

unit are a solution of the SVM problem (8.3) for the examples (xl, yl) such

that |v?
n · xl + a?

n| ≤ 1, and where the “standard” SVM constraints

yl (vn · xl + an) ≥ 1− ξl

are replaced with the constraints

yl w
?
n (vn · xl + an) ≥

 1− yl

b+
∑
m6=n

w?
m h(v?

m · xl + a?
m)

− ξl .
Summary

Our analysis leads to the following theorem:

Theorem 8.4 If an MLP is a minimum of (8.10), then it maximizes the mar-

gin in the hidden layer space. In other words, (w, b) is solution of the SVM

problem (8.3) for the hidden layer Φ found by the MLP.

Moreover, if we use the hard transfer function (8.31), then the n-th hidden

unit is solution of a local SVM on examples xl which satisfy |vn ·xl + an| ≤ 1.
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For this SVM, the standard separation constraints yl (vn · xl + an) ≥ 1 are

replaced by the constraints

yl wn (vn · xl + an) ≥ 1− yl

 b+
∑
m6=n

wm h(vm · xl + am)

 . (8.32)

Finally, if (Φ(xl), yl) is a “global” support vector for w, then (xl, yl) will be a

“local” support vector for the n-th unit if |vn · xl + an| ≤ 1.

This theorem has several important consequences. First, it shows that an

optimal MLP for the cost function (8.10) is an SVM in the hidden layer space.

It is therefore possible to apply the large margin classifier theory (Vapnik, 1995)

to MLPs. It also provides an interesting interpretation of the role of the hidden

units: each hidden unit focuses on a subset of the training set, and is a kind of

local SVM, where the constraints depend on the classification performance of

the other hidden units. Note also that the output weight vector w is a sparse

combination of the features Φ(xl), whereas the hidden unit weights vn are a

sparse combination of the training examples xl.

Weight Decay or Early Stopping

In light of Theorem 8.4, we can now easily extend Theorem 8.1 and Theorem 8.3

to MLPs. With weight decays in the cost function (8.10), Theorem 8.1 is still

valid for MLPs, because we can apply the same derivations to the hidden units.

If we remove the weight decays, Theorem 8.3 is valid for controlling the “global”

margin ρ = 2
‖w‖ using early stopping or the learning rate. This is because we

can derive the bound

‖Φ(x)‖ ≤ N ,

which does not depend on the parameters of the hidden layer, which change

through the iterations. For hidden units, it is not possible to derive the margin,

because constraints (8.32) are different for each training example; however,

using derivations similar to those used for Theorem 8.3, it is possible to control

the norms ‖vn‖.

Too Many Hyper-Parameters Remain

Still, we are left with too many hyper-parameters to select with this kind of

MLP in practice: the weight decay parameters µ and ν, the learning rate for the

hidden layer, and the learning rate for the output layer. Tuning the two learning

REF V. Vapnik. The Nature of Statistical Learning Theory. Springer, second edition, 1995.
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rates is particularly difficult. Therefore, we propose another simplification in

the next section.

A Very Simple MLP

It has been shown by Auer et al. (2002) that a Perceptron committee

fθ(x) = b+
N∑

n=1

h(vn · x + an) . (8.33)

passed through a particular kind of transfer function is a universal approxi-

mator. Without this particular output transfer function, the Perceptron com-

mittee (8.33) can thus solve any kind of binary classification problems, given

enough hidden units. This shows that we do not need output weights in MLPs

for binary classification. However, if we use the cost function (8.10), we can

no longer control the size of the margin in the hidden layer space. Thus, we

propose to minimize

J : θ 7→ 1
L

∑
l

|β − yl fθ(x)|+ (8.34)

instead, where β is a hyper-parameter to be tuned. As the margin ρ in the

hidden layer space is fixed and satisfies

ρ =
2β√
N

,

it is easy to control using β. Note that Theorem 8.4 from the previous section

remains valid, provided that wn = 1 ∀n. Each hidden unit acts as a local SVM,

and it is possible to control the norms ‖vn‖ (and thus the sparseness of the

optimal vn in the dual space) using the learning rate and early stopping.

Efficient Algorithm

Deriving stochastic gradient descent equations for the cost function (8.34) leads

to Algorithm 8.2. This algorithm is of interest, because hidden units will quickly

focus on a few examples and few updates will be performed. Moreover, it is

simple to implement, and as it does not require any internal storage (such as

derivatives for example), nor any hyperbolic tangent computation. It is thus

computationally efficient.

REF P. Auer, H. Burgsteiner, and W. Maass. Reducing communication for distributed

learning in neural networks. In J. R. Dorronsoro, editor, ICANN’2002, volume 2415 of

Lecture Notes in Computer Science, pages 123–128. Springer, 2002.
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Algorithm 8.2 Simple MLP Algorithm
Initialize w and b to zero

repeat

for l ∈ {1 . . . L} do

if yl fθ(x) ≤ β then

for n ∈ {1 . . . N} do

if |vn · xl + an| ≤ 1 then

vn ← vn + λ yl xl

an ← an + λ yl

end if

end for

b← b+ λ yl

end if

end for

until termination criterion

Note that the theory developed in Chapter 7 can be applied to the margin

criterion. If we ignore the rare case yl fθ(x) = β where the cost function is not

differentiable, we can locally derive the Hessian of the cost (8.34):

∂2J(θ)
∂vm ∂vn

= 0 (m 6= n) .

Thus, the Hessian of the cost function is completely block-diagonal with respect

to a pair of hidden units, which guarantees local independence of the hidden

units during training as stated in Chapter 7. From an optimization standpoint

the margin criterion leads to a mathematically efficient stochastic gradient

descent.

Experiments

We performed experiments on the Forest and Connect-4 data sets presented

in Chapter 4. For SVMs we used a 300MB kernel evaluation cache on top of

the memory needed for the SVM structure, whereas MLPs did not need any

additional memory. The MLP and SVM hyper-parameters were carefully tuned

using validation sets. Both the Standard MLP and the Simple MLP used early

stopping based on the validation set. Results are given in Table 8.1. Clearly, the

Simple MLP algorithm gives better generalization performance than the other

models in much less time. SVMs are also very computationally expensive in

the test phase compared to MLPs. Around 30% of the training examples are

support vectors on both databases, whereas MLPs contain only 500 hidden
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Model
Test Err. (%) Time Factor

Forest Connect-4 Forest Connect-4

SVM 10.5 11.4 428.8 357.1

Standard MLP 8.9 11.4 29.1 11.1

Simple MLP 7.3 10.1 1.0 1.0

Table 8.1. Test errors of SVMs (with a Gaussian kernel), MLPs (trained

with the CE criterion), and the proposed Simple MLP on two different clas-

sification tasks (Forest and Connect-4). The time factors give the training

time relative to the Simple MLPs, for similar generalization performance. This

shows that not only is the Simple MLP significantly better than MLPs and

SVMs statistically (with 99% confidence), it is also significantly faster (from 9

to 400 times faster!).

units. Finally, the fact that the Simple MLP leads to better performance than

SVMs shows that the margin idea is not sufficient: the feature space is crucial

as well. Conceptually, SVMs are as simple as Φ-machines: they do not train

the feature space, whereas MLPs do.

Margin or No Margin, That is the Question

It is interesting to note that a variant of Algorithm 8.2 was already pre-

sented by Nilsson (1965) (first proposed by Ridgway, 1962) to train Perceptron

committees. At this time, the author was not aware of the margin idea, and gra-

dient descent techniques were not yet introduced in machine learning. Instead

of using the hard version of the hyperbolic tangent for the transfer function

in the committee (8.33), Nilsson used the sign function. He also removed the

output bias. This leads us to consider his model:

fθ(x) =
N∑

n=1

sign(vn · x + an) .

Note that fθ(x) must be an integer, because of the sign function. If we suppose

the number of hidden units to be odd, and if an example (xl, yl) is misclassified,

we need only modify 1
2 [ |fθ(xl)|+1 ] units so they correctly classify the example.

This ensures that the example will be well-classified by the committee. This

yields Algorithm 8.3, which we call the Nilsson MLP. Note that hidden units

REF N. J. Nilsson. Learning Machines. McGraw-Hill, 1965.

REF W. C. Ridgway. An adaptive logic system with generalizing properties. Technical

Report 1556-1, Standford University, 1962.
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Algorithm 8.3 Nilsson MLP Algorithm
Initialize w and b to zero

repeat

for l ∈ {1 . . . L} do

if yl fθ(x) ≤ 0 then

Sort |vn · xl + an| for misclassifying hidden units n (such that

yl (vn ·xl +an) ≤ 0) in ascending order. Let on be the ordered

indices.

for n ∈ { 1 . . . 1
2 [ |fθ(xl)|+ 1 ] } do

von ← von + λ yl xl

aon ← aon + λ yl

end for

end if

end for

until termination criterion

modified when an example is misclassified by the committee miss-classify the

example, and are “closest” to the example.

The Nilsson MLP algorithm is to the Simple MLP algorithm what the

original Perceptron algorithm is to the Margin Perceptron algorithm: it does

not include the notion of the margin. First, the fact that the weights are

updated only if an example is misclassified corresponds to β = 0 for the Simple

MLP (i.e. not having a global margin). The global margin in the Simple MLP

insures that on average more than half of the hidden units output the correct

class (if β > 0) instead of only half for Nilsson MLP algorithm. Thus, with a

global margin, the Simple MLP adds confidence to the output of the committee.

In addition, the fact that Nilsson uses the sign transfer function instead of the

hard version of the hyperbolic tangent function forces each hidden unit to

act locally as the original Perceptron instead of the Margin Perceptron. The

Nilsson MLP algorithm lacks the notion of margin, like the original Perceptron

algorithm, but it is surprising how similar “non-margin-aware” algorithms are

to “margin-aware” algorithms!

Finally, we give a comparison of these algorithms in Table 8.2 to high-

light the importance of the margin in practice. The hyper-parameters were

optimized for best generalization performance, using early stopping on the val-

idation set.
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Model
Test Err. (%)

Forest Connect-4

Original Perceptron 31.6 25.6

Margin Perceptron 23.8 20.3

Nilsson MLP 10.5 17.2

Simple MLP 7.3 10.1

Table 8.2. Comparison of “margin aware” algorithms (Margin Perceptron

and Simple MLP) and “non margin aware” algorithms (Original Perceptron

and Nilsson MLP).

Contributions

This chapter includes and extends ideas found in the following published

paper:

R. Collobert and S. Bengio. Links between perceptrons, MLPs and SVMs. In

International Conference on Machine Learning, ICML, 2004b.

Here we have included more detail (especially math) and a comparison between

algorithms using the margin idea (the Margin Perceptron and the Simple MLP)

and algorithms which do not (the Original Perceptron and the Nilsson MLP).

Conclusion

In this chapter, we have drawn new links between three well-known ma-

chine learning algorithms, Perceptrons, MLPs, and SVMs. In particular, after

pointing out that apart from the training algorithms, Perceptrons are equiv-

alent to linear SVMs. We have shown that this difference is important since

it can be computationally expensive to reach the SVM solution by stochastic

gradient descent, mainly due to the regularization term. Removing this term,

we then showed that the margin can be controlled by other means, namely

the learning rate and the mechanism of early stopping. In the case of linearly

separable classes, we have shown a relation between the largest existing margin

and the margin of solutions found with the Perceptron. Furthermore, we have

shown that, under some assumptions, MLPs are in fact SVMs which maximize

the margin in the hidden layer space, and hidden units are SVMs in the input

space. The theory developed for controlling the margin of Perceptrons can also

be applied to MLPs. Finally, we proposed a new algorithm to train MLPs which

is both efficient (in time and space) and yields generalization performance at
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least as good as other models.

Many research directions could be explored in the future. For example, we

stated that it can be intractable to reach the SVM solution with stochastic

gradient descent. However, it is possible that we do not need to wait for the

convergence of the SVM algorithm to its unique solution, and early stopping

should work for SVMs as well (even if it will be quite computationally expensive

in practice, because of the large number of support vectors). The impact of

the radius of the training data which appears in the margin bounds could be

studied as well. Finally, note that the only thing forcing the hidden units of a

Simple MLP to be different is the (random) initialization. Thus, initialization

of MLPs is probably crucial, and should be revised with knowledge of the theory

we developed in this chapter.
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9 Conclusion

Throughout this thesis, we have stressed the importance of improving ex-

isting machine learning techniques based on theoretical considerations, while

keeping in mind an important practical aspect: the training time of the algo-

rithm. Our main interests were three popular and powerful algorithms, Multi

Layer Perceptrons (MLPs), Mixture of Experts (MoEs) and Support Vector

Machines (SVMs).

SVMs appeared to suffer from a resource consuming training method. How-

ever, let us point out that the state-of-the-art method presented can be viewed

as an improvement of stochastic gradient descent under constraints, and that

SVMs are a kind of linear model in an arbitrary feature space. Why, in these

conditions, does the training of such a model take more time than the training

of MLPs with stochastic gradient descent? The practice of reaching the unique

solution of SVMs at all costs should be considered cautiously: a “unique solu-

tion” does not mean necessarily a “better solution” (in terms of generalization

performance).

The “divide and conquer” method we proposed based on a type of MoEs

is an important finding. We showed that it is possible to iteratively deter-

mine a partition of the training set such that even if each expert is trained

on a subset of the training set, the resulting mixture has good generalization

performance. For this algorithm, our main concern is the number of hyper-

parameters. Finding ways to overcome this drawback is an important research

direction. In particular, since MLPs can be viewed as a MoEs, it would be

interesting to investigate a method to intelligently distribute examples among

hidden units, as for the experts in our mixture.

Overall, models based on a stochastic gradient descent training algorithm
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seem to be the most suited for large scale problems. However, we showed

that small changes in the structure of a model can strongly affect the speed

of the training. In particular, we pointed out that the training cost for a

block-diagonal Hessian leads to the independent training of sub-vectors of the

parameters of the model, which greatly simplifies the training process. Note the

interesting parallel to the divide and conquer technique we proposed, which also

forces the experts of our mixture model to train independently, by assigning

them a subset of the training set. More research in this direction could be

carried out in order to simplify the training of more complex models, MLPs

with more than one hidden layer in particular.

We also highlighted the importance of the margin idea introduced by SVMs.

We showed that the margin idea was underlying in a certain class of Perceptrons

and MLPs, which gives them some advantage over algorithms not “margin-

aware” in generalization performance. SVMs do not have a monopoly on the

margin and, moreover, they lack the trainable feature space of MLPs. This

impacts classification performance in the large scale experiments we proposed.

It could be interesting to extend the margin idea to MLPs for classification

tasks with more than two classes.

Finally, let us say that we are far from having found the “ultimate” model.

Maybe it does not exist. Maybe using prior knowledge depending on the nature

of each task is the way to go. Anyway, machine learning is an endless source

of problems...



A Non Linear Programming

Here we give the main theorems of non linear programming with inequality

constraints used in this thesis. This appendix summarizes theorems found

in (Ciarlet, 1990), and previously proposed in (Fletcher, 1987) in a less fine

way. Non linear programming with inequality constraints attempts to find u

such that u ∈ U = {v ∈ Rn : ϕi(v) ≤ 0, 1 ≤ i ≤ m }

J(u) = inf
v∈U

J(v) .
(A.1)

Non linear programming with inequality constraints theory generalizes the well-

known Lagrangian techniques found for minimizing problems with equality

constraints. Thus, we give the definition of a Lagrangian in Definition A.1.

Definition A.1 The Lagrangian associated to the minimization problem (A.1)

is the function L defined by

L :


V × Rm

+ → R

(v, µ) 7→ J(v) +
m∑

i=1

µi ϕi(v) .
(A.2)

KKT Conditions, General Case

Theorem A.1, below, gives the necessary conditions (named Karush-Kuhn

and Tucker (KKT) conditions) for a minimum in non linear programming.

REF P. G. Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation.

Masson, 1990.

REF R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 1987.
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Theorem A.1 Consider a set of functions ϕi : Ω ⊂ V → R, 1 ≤ i ≤ m,

defined on a open set Ω of a Hilbert space V . Consider also

U = {v ∈ Ω : ϕi(v) ≤ 0, 1 ≤ i ≤ m } ,

a subset of Ω. Given u ∈ U , define

I(u) = { 1 ≤ i ≤ m, ϕi(u) = 0 } .

It is assumed that functions ϕi, i ∈ I(u) are differentiable in u, and functions

ϕi, i 6∈ I(u) are continuous in u. Finally, we consider a function J : Ω → R
differentiable in u.

If J has a minimum in u with respect to the set U , then there exist generalized

Lagrangian multipliers λi, 1 ≤ i ≤ m such that the following Karush-Kuhn

and Tucker (KKT) conditions hold
J ′(u) +

m∑
i=1

λi ϕ
′
i(u) = 0

λi ≥ 0, 1 ≤ i ≤ m,
m∑

i=1

λi ϕi(u) = 0 .

(A.3)

Moreover, if the derivatives ϕi, i ∈ I(u) are linearly independent, then the

Lagrangian multipliers are unique.

KKT Conditions, Convex Case

If J and all constraints ϕi are supposed to be convex, then KKT conditions

become sufficient for the existence of a minimum of problem (A.1), as stated

in the following theorem.

Theorem A.2 Consider J : Ω ⊂ V → R, a function defined on a convex open

set Ω of a Hilbert space V . Consider

U = {v ∈ Ω : ϕi(v) ≤ 0, 1 ≤ i ≤ m}

a subset of Ω. Suppose the constraints ϕi : Ω ⊂ V → R, 1 ≤ i ≤ m to be

convex. Let us also consider u ∈ U such that ϕi and J are differentiable in u

(for 1 ≤ i ≤ m).

If J admits a local minimum in u with respect to the set U , then there exits λi

(for 1 ≤ i ≤ m) such that KKT conditions (A.3) hold .

Conversely, if J : U → R is convex and if there exists λi, 1 ≤ i ≤ m such that

KKT conditions hold, then J admits a minimum in u with respect to U .
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Saddle Point

It is possible to relate the existence of a minimum of problem (A.1) with

the existence of a saddle point (see Definition A.2) of the Lagrangian (A.2), as

stated in Theorem A.3.

Definition A.2 Consider two sets V and M and a function

L : V ×M → R .

A point (u, λ) is said to be a saddle point of function L if u is a minimum for

v ∈ V 7→ L(v, λ) and λ is a maximum for µ ∈M 7→ L(v, µ). In other words,

sup
µ∈M

L(u, µ) = L(u, λ) = inf
v∈V

L(v, λ)

must hold.

Theorem A.3 If (u, λ) ∈ V ×Rm
+ is a saddle point of the Lagrangian (A.2),

then u belongs to U and is a solution of problem (A.1).

Conversely, suppose that J and all constraints ϕi are convex and differentiable

in u ∈ U (1 ≤ i ≤ m). Then, if u is a solution of problem (A.1), there

exists at least one λ ∈ Rm
+ such that (u, λ) ∈ V × Rm

+ is a saddle point of the

Lagrangian (A.2).

In the convex case, the problem of finding a saddle point of the Lagrangian

as stated in Theorem A.3 is often referred to being the dual problem of the

primal problem (A.1). By extension, Lagrange multipliers introduced in the

dual problem are sometimes called dual variables. In this thesis we use the

expression dual space to refer to the space of the Lagrangian multipliers.
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L. Bottou. Une Approche Théorique de l’Apprentissage Connexioniste; Appli-
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