
Image Classification with Deep Networks

Ronan Collobert
Facebook AI Research
Feb 11, 2015

Overview

• Origins of Deep Learning
• Shallow vs Deep
• Perceptron
• Multi Layer Perceptrons

• Going Deeper
• Why?
• Issues (and fix)?

• Convolutional Neural Networks
• Fancier Architectures
• Applications

2 / 65

Acknowledgement
Part of these slides have been cut-and-pasted from
Marc’Aurelio Ranzato’s original presentation

3 / 65

Shallow vs Deep

4 / 65

Shallow Learning (1/2)

5 / 65

Shallow Learning (2/2)
Typical example

6 / 65

Deep Learning (1/2)

7 / 65

Deep Learning (2/2)

8 / 65

Deep Learning (2/2)

9 / 65

Perceptrons
(shallow)

10 / 65

Biological Neuron

• Dendrites connected to other neurons through synapses
• Excitatory and inhibitory signals are integrated
• If stimulus reaches a threshold, neuron fires along the axon

11 / 65

McCulloch and Pitts (1943)
• Neuron as linear threshold units

• Binary inputs x ∈ {0, 1}d , binary output, vector of weights
w ∈ Rd

f (x) =

{
1 if w · x > T
0 otherwise

• A unit can perform OR and AND operations
• Combine these units to represent any boolean function
• How to train them? 12 / 65

Perceptron: Rosenblatt (1957)

• Input: retina x ∈ Rn
• Associative area: any kind of (fixed) function ϕ(x) ∈ Rd
• Decision function:

f (x) =

{
1 if w · ϕ(x) > 0
−1 otherwise

13 / 65

Perceptron: Rosenblatt (1957)

wx+b=0

• Training update rule: given (xt , yt) ∈ Rd × {−1, 1}

wt+1 = wt +

{
yt ϕ(xt) if yt w · ϕ(xt) ≤ 0
0 otherwise

• Note that
wt+1 · ϕ(xt) = wt · ϕ(xt) + yt ||ϕ(xt)||2︸ ︷︷ ︸

>0

• Corresponds tominimizing
w 7→

∑
t

max(0,−yt w · ϕ(xt))
14 / 65

Multi Layer Perceptrons
(deeper)

15 / 65

Going Non-Linear
• How to train a “good” ϕ(·) in

w · ϕ(x) ?

• Many attempts have been tried!
• Neocognitron (Fukushima, 1980)

16 / 65

Going Non-Linear
• Madaline: Winter & Widrow, 1988

• Multi Layer Perceptron
x W 1 × • tanh(•) W 2 × • score

• Matrix-vector multiplications interleaved with
non-linearities

• Each row ofW 1 corresponds to a hidden unit
• The number of hidden units must be chosen carefully

17 / 65

Universal Approximator (Cybenko, 1989)

• Any function
g : Rd −→ R

can be approximated (on a compact) by a two-layer neural
network

x W 1 × • tanh(•) W 2 × • score

• Note:
• It does not say how to train it
• It does not say anything on the generalization capabilities

18 / 65

Training a Neural Network
• Given a network fw (·) with parametersW , “input” examples
xt and “targets” yt , we want to minimize a loss

W 7→
∑
(xt ,yt)

C (fW (xt), yt)

• View the network+loss as a “stack” of layers
x f1(•) f2(•) f3(•) f4(•)

f (x) = fL(fL−1(. . . f1(x))

• Optimization problem: use some sort of gradient descent
Wl ←−Wl − λ

∂f

∂wl
∀l

−→ How to compute ∂f∂wl ∀l ?
19 / 65

Gradient Backpropagation (1/2)

• In the neural network field: (Rumelhart et al, 1986)
• However, previous possible references exist,including (Leibniz, 1675) and (Newton, 1687)
• E.g., in the Adaline L = 2

x w1 × • 1
2 (y − •)

• f1(x) = w1 · x
• f2(f1) = 1

2 (y − f1)
2

∂f

∂w1
=

∂f2
∂f1︸︷︷︸

=y−f1

∂f1
∂w1︸︷︷︸
=x

20 / 65

Gradient Backpropagation (2/2)
x f1(•) f2(•) f3(•) f4(•)

• Chain rule:
∂f

∂wl
=

∂fL
∂fL−1

∂fL−1
∂fL−2

· · ·
∂fl+1
∂fl

∂fl
∂wl

=
∂f

∂fl

∂fl
∂wl

• In the backprop way, each module fl()
• Receive the gradient w.r.t. its own outputs fl
• Computes the gradient w.r.t. its own input fl−1 (backward)
• Computes the gradient w.r.t. its own parameters wl (if any)

∂f

∂fl−1
=
∂f

∂fl

∂fl
∂fl−1

∂f

∂wl
=
∂f

∂fl

∂fl
∂wl

• Often, gradients are efficiently computed using outputs ofthe module Do a forward before each backward
21 / 65

Examples Of Modules
• We denote

• x the input of a module
• z target of a loss module
• y the output of a module fl(x)
• ỹ the gradient w.r.t. the output of each module

Module Forward Backward Gradient
Linear y =W x W T ỹ ỹ xT

Tanh y = tanh(x) ỹ (1− y2)

Sigmoid y = 1/(1+ e−x) ỹ (1− y) y

ReLU y = max(0, x) ỹ 1x≥0

Perceptron Loss y = max(0, −z x) −1z ·x≤0

MSE Loss y = 1
2 (x − z)

2 x − z

22 / 65

Typical Classification Loss (euh, Likelihood)
• Given a set of examples (xt , yt) ∈ Rd × N, t = 1 . . .Twe want to maximize the (log-)likelihood

log

T∏
t=1

p(yt |xt) =
T∑
t=1

log p(yt |xt)

• The network outputs a score fy (x) per class y
• Interpret scores as conditional probabilities using a
softmax:

p(y |x) =
efy (x)∑
i e
fi (x)

• In practice we consider only log-probabilites:
log p(y |x) = fy (x)− log

[∑
i

efi (x)

]
23 / 65

Optimization Techniques
Minimize

W 7→
∑
(xt ,yt)

C (fW (x), y)

• Gradient descent (“batch”)
W ←−W − λ

∑
(xt ,yt)

∂C (fW (xt), yt)

∂W

• Stochastic gradient descent
W ←−W − λ

∂C (fW (xt), yt)

∂W

• Many variants, including second order techniques (wherethe Hessian is approximated)
24 / 65

Going Deeper

25 / 65

Deeper: What is the Point? (1/3)
x f1(•) f2(•) f3(•) f4(•)

• Share features across the “deep” hierarchy
• Compose these features
• Efficiency: intermediate computations are re-used

[0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 . . .] truck feature

26 / 65

Deeper: What is the Point? (2/3)
Sharing

[1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 . . .] motorbike
[0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 . . .] truck

27 / 65

Deeper: What is the Point? (3/3)
Composing

(Lee et al., 2009)28 / 65

Deeper: What are the Issues? (1/2)
Vanishing Gradients

• Chain rule:
∂f

∂wl
=

∂fL
∂fL−1

∂fL−1
∂fL−2

· · ·
∂fl+1
∂fl

∂fl
∂wl

• Because transfer function non-linearities, some ∂fl+1∂fl will bevery small, or zero, when back-propagating
• E.g. with ReLU

y = max(0, x)
∂y

∂x
= 1x≥0

29 / 65

Deeper: What are the Issues? (2/2)
Number of Parameters
• A 200× 200 image with 1000 hidden units leads to 40Bparameters
• We would need a lot of training examples
• Spatial correlation is local anyways

30 / 65

Fix Vanishing Gradient Issue with Unsupervised Training (1/2)
• Leverage unlabeled data (when there is no y)?

• Popular way to pretrain each layer
• “Auto-encoder/bottleneck” network

W ●

tanh(●)

tanh(●)

W ●

W ●

x

1

2

3

• Learn to reconstruct the input
||f (x)− x ||2

• Caveats:
• PCA if noW 2 layer (Bourlard & Kamp, 1988)
• Projected intermediate space must be of lower dimension

31 / 65

Fix Vanishing Gradient Issue with Unsupervised Training (2/2)

W ●

tanh(●)

tanh(●)

W ●

W ●

x

1

2

3

• Possible improvements:
• NoW 2 layer,W 3 =

[
W 1
]T (Bengio et al., 2006)

• Noise injection in xreconstruct the true x (Bengio et al., 2008)
• Impose sparsity constraintson the projection (Kavukcuoglu et al., 2008)

32 / 65

Fix Number of Parameters Issue by Generating Examples (1/2)

• Capacity h is too large? Find more training examples L!

33 / 65

Fix Number of Parameters Issue by Generating Examples (2/2)
• Concrete example: digit recognition
• Add an (infinite) number of random deformations(Simard et al, 2003)

• State-of-the-art with 9 layers with 1000 hidden units and...a GPU (Ciresan et al, 2010)
• In general, data augmentation includes

• random translation or rotation
• random left/right flipping
• random scaling

34 / 65

Convolutional Neural Networks

35 / 65

2D Convolutions (1/4)
• Share parameters across different locations

(Fukushima, 1980)(LeCun, 1987)
36 / 65

2D Convolutions (1/4)
• Share parameters across different locations

(Fukushima, 1980)(LeCun, 1987)
37 / 65

2D Convolutions (1/4)
• Share parameters across different locations

(Fukushima, 1980)(LeCun, 1987)
38 / 65

2D Convolutions (2/4)
• It is like applying a filter to the image...
• ...but the filter is trained

? =

? =

39 / 65

2D Convolutions (3/4)
• It is again amatrix-vector operation, but where weightsare spatially “shared”

W●1

W●2
W●3

• As for normal linear layers, can be stacked for higher-level
representations

40 / 65

2D Convolutions (4/4)

41 / 65

Spatial Pooling (1/2)

• “Pooling” (e.g. with a max() operation) increases robustnessw.r.t. spatial location

42 / 65

Spatial Pooling (2/2)
Controls the capacity
• A unit will see “more” of the image, for the same number ofparameters

• adding pooling decreases the size of subsequent fullyconnected layers!
43 / 65

Spatial Pooling (2/2)
Controls the capacity
• A unit will see “more” of the image, for the same number ofparameters

• adding pooling decreases the size of subsequent fullyconnected layers!
44 / 65

Fully Connected Layers

Fully connected layers are a particular type of convolutions(with a w × h kernel)

45 / 65

Training vs Testing

• Training Phase

• Testing Phase

46 / 65

Training vs Testing
• Training Phase

• Testing Phase
• convolutions are naturally applied to larger input images
• much faster than sliding windows

47 / 65

Fancier Architectures

48 / 65

Multi-Scale

(Farabet et al., 2013) “Learning hierarchical features for scene labeling”
49 / 65

Multi-Modal

(Frome et al., 2013) “Devise: a deep visual semantic embedding model”
50 / 65

Multi-Task

(Zhang et al., 2014) “PANDA”
51 / 65

Recurrent Neural Networks (1/3)

• Leverage previous outputlabel scores

I(t)O(t− 1)

H(t)

O(t)

• Leverage previous hiddenrepresentations
I(t)H(t− 1)

H(t)

O(t)

• Both
I(t) O(t− 1)H(t− 1)

H(t)

O(t)

(Jordan, 1986) (Elman, 1990) 52 / 65

Recurrent Neural Networks (2/3)
• Training: unfold network through time

• Weights are shared through time
• Standard backpropagation applies

I(t)O(t− 1)

H(t)

O(t)

O(0) I(1)

H(1)

O(1) I(2)

H(2)

O(2) I(3)

H(3)

O(3) I(4)

H(4)

O(4)• Note: the loss might include all O(t) ∀t
• Must consider the full sequence 1..T (not real-time) 53 / 65

Recurrent Neural Networks (3/3)

(Pinheiro et al., 2014) “Recurrent Convolutional Neural Networks for
Scene Labeling” 54 / 65

Graph Transformer Networks

(Bottou et al., 1997) (Lecun et al., 1998)55 / 65

Applications

56 / 65

Digit Recognition (1/2)

Err. rate (%)
Gaussian SVM 1.4
1000 HU NN (MSE) 4.5
800 HU NN 1.6
CNN 0.8
CNN + distortions 0.4
9 layers NN + distortions 0.4

57 / 65

Digit Recognition (2/2)

(Lecun et al., 1998)
58 / 65

ImageNet (1/2)

(Deng et al., 2009) “Imagenet: a large scale hierarchical image database”
59 / 65

ImageNet (2/2)

(Krizhevsky et al., 2012) “ImageNet Classification with deep CNNs”
60 / 65

Texture Classification

(Sifre et al., 2013) “Rotation, scaling and deformation invariant
scattering for texture discrimination” 61 / 65

Object Segmentation

(Farabet et al., 2013) “Learning hierarchical features for scene labeling”
(Pinheiro et al., 2014) “Recurrent CNN for scene parsing”

62 / 65

Action Recognition in Videos

(Taylor et al., 2010) “Convolutional learning of spatio-temporal features”
(Karpathy et al, 2014) “Large-scale video classification with CNNs”

63 / 65

Denoising

(Burger et al., 2012) “Can plain NNs compete with BM3D?”

64 / 65

Toolboxes

• Torch7 http://torch7.org

• Theano http://deeplearning.net/software/theano

• Cuda Convnet http://code.google.com/p/cuda-convnet

• Caffe http://caffe.berkeleyvision.org

• NVIDIA Kernels https://developer.nvidia.com/cuDNN

65 / 65

http://torch7.org
http://deeplearning.net/software/theano
http://code.google.com/p/cuda-convnet
http://caffe.berkeleyvision.org
https://developer.nvidia.com/cuDNN

