Image Classification with Deep Networks

Ronan Collobert

Facebook Al Research

Feb 11,2015

Overview

Origins of Deep Learning
e Shallow vs Deep
e Perceptron
e Multi Layer Perceptrons

Going Deeper
° V\/hy?
e Issues (and fix)?

Convolutional Neural Networks

Fancier Architectures

Applications

2/65

Acknowledgement

Part of these slides have been cut-and-pasted from
MarcAurelio Ranzato's original presentation

3/65

Shallow vs Deep

4765

Shallow Learning

task specific

/

Features —> Modeling —» Decoding

fixed during training \ f

“shallow”

Task-specific features:
Simple machine learning model

5/65

Shallow Learning (2/2)

Typical example

Featwres COlOr and texture, region-based segmentation,
shape, pyramid histogram of oriented gradients,
percentage pixels above horizontal, SIFT

modeling Neural network, simple probabilistic model,
linear programming, trees...

pecoding \arkov Random Field

6/65

Deep Learning (1/2)

learned

Features —> Modeling —» Decoding

Flexible:
Complex machine learning algorithm

7165

Deep Learning (2/2)

Recurrent E Q
Neural Net | j @)
O { .
Convolutional | < Boosting
Neural Net ==
o e
Neural Net ! Perceptron o
SUPERVISED E SVM
Deep (sparse/denoising) E UNSUPERVISED
Autoencoder : Neural Net O
; Sparse Coding
p 1 | E GMM
@) Deep Belief Net | Restricted BM @
o Al o
=
BayesNP =
O =

8/65

Deep Learning (2/2)

Recurrent E Q
Neural Net | j @)
: Boosti
Convolutional | E oosting
. Neural Net E .
Neural Net E Perceptron
SUPERVISED SVM
Deep (sparse/denoising) : UNSUPERVISED
O Autoencoder Neural Net O

PROBABILISTIC “P*™*¢
O ODeep Belief Net ' Restricted BMO
BayesNP
Q

DEEP

9/65

Perceptrons
(shallow)

10/65

Biological Neuron

action_refractory
50 - potential ~ period

depolarization —»| |«— repolarization

rthveshuld potential |

Membrane Potential (mV)

resting potential .)

A resing potenit _ hyperpolarzaton
-100 T T T T T T T T
01 2 3 45 6 7
Time (milliseconds)
Action Potential in a Neuron

e Dendrites connected to other neurons through synapses
e Excitatory and inhibitory signals are integrated
e If stimulus reaches a threshold, neuron fires along the axon

11765

McCulloch and Pitts (1943)
e Neuron as linear threshold units

Inputs Weights
WJ

Threshold T

In

Binary inputs x € {0, 1}9, binary output, vector of weights

w e RY
f(x)—{ 1 fw-x>T

0 otherwise

A unit can perform OR and AND operations
Combine these units to represent any boolean function

How to train them?

12/65

Perceptron: Rosenblatt (1957)

— @ >®
w p(x)

associative
area

e Input: retina x € R”
e Associative area: any kind of (fixed) function ¢(x) € R?
e Decision function:

1 ifw-e(x)>0
f(x) =
(x) { —1 otherwise

13/65

Perceptron: Rosenblatt (1957)

00
o o o wxrb=0
/
X X
X X
X
XX
X
x X

e Training update rule: given (x¢, y¢) € RY x {—1,1}

yeo(xe) ifyrw-o(x) <0

Wiyl = Wi + .
el t { 0 otherwise

e Note that
Wept - 0(Xe) = We - 0(Xt) + e H‘P(Xt)HQ
————

>0
e Corresponds to minimizing

W Z max(0, —yr w - ©(xt))

14/65

Multi Layer Perceptrons
(deeper)

15/65

Going Non-Linear

e How to train a “good” ¢(-) in

w - (x)?

e Many attempts have been tried!
e Neocognitron (Fukushima, 1980)

16/65

Going Non-Linear
e Madaline: Winter & Widrow, 1988

ADALINE

Neurons

ADALINE
Neurons

| -
Pattern

22 t)__,

1 1
' '
' '
1 1
Input I '
! |
pattern D) . \
1 ! Binary
! Output
= x
Output 3 : : q
.
D) layer HE H
! !
r *n o7 '
1 !
Hidden-layer H .
First Layer output S + | Desired response
Neurons pattern 1| Agorithm
1

|

iring signal

ApALINg | (raiing signa)
e '

Figure 1: Layered feed-forward ADALINE network.

e Multi Layer Perceptron

T W' xe tanh(e) W2 x e score

e Matrix-vector multiplications interleaved with
non-linearities

e Fach row of W? corresponds to a hidden unit

e The number of hidden units must be chosen carefully

17765

Universal Approximator (Cybenko, 1989)

e Any function

g:RI—R
can be approximated (on a compact) by a two-layer neural
network
x Wl xe tanh(e) W2 xe score
e Note:

e |t does not say how to train it
e It does not say anything on the generalization capabilities

18/65

Training a Neural Network

e Given a network f,, () with parameters W, “input” examples
x¢ and “targets” y¢, we want to minimize a loss

Wi Y C(fw(xe), yi)

(xt.yt)

e View the network-+loss as a “stack” of layers
o = fi(0) N o) o o) ¥ fale) |
f(x)=f(fi—1(. .. A(x))

e Optimization problem: use some sort of gradient descent

or
W) — W) — A\— W
6W/

— Howto compute §& v/ 7

19/65

Gradient Backpropagation (1/2)

e In the neural network field: (Rumelhart et al, 1986)
e However, previous possible references exist,
including (Leibniz, 1675) and (Newton, 1687)

e Eg,inthe Adaline L =2

T wh x e Ly —o)

o fi(x)=wy-x
o R(f)=3(y - h)
of of, 0fi

wy 8fi Owy
~~ —~~

=y—f =X

20/65

Gradient Backpropagation (2/2)

v = F1(0) | fa(0) | fa(o) F{ fale)]

e Chainrule:
Of _ Ofi Ofia Ofin O _OF 0
OW/ N 6fL_1 afL_Q 8f, 8W/ N 6f/ aW/

e In the backprop way, each module ()
e Receive the gradient w.r.t. its own outputs f;
e Computes the gradient w.r.t. its own input f,_; (backward)
e Computes the gradient w.r.t. its own parameters w; (if any)

or _8f of
8fi_1 0Of 0fi_1
of Of of
ow, — of; dw

21/65

Examples Of Modules

e We denote
x the input of a module

e ztarget of a loss module

e y the output of a module f(x)

e j the gradient w.r.t. the output of each module
Module Forward Backward Gradient
Linear y=Wx wTy gxT
Tanh y = tanh(x) y(1—y?)
Sigmoid y=1/1+e>) y(1-y)y
RelU y =max(0, x) V10
Perceptron Loss y = max(0, —z x) —1,x<0

MSE Loss y=3(x—2z)? X—z

22/65

Typical Classification Loss (euh, Likelihood)

e Given a set of examples (x¢,y:) €RI x N, t =1... T
we want to maximize the (log-)likelihood

T T
log H p(yelxt) = Z log p(yt|xt)
t=1 t=1

e The network outputs a score f,(x) per class y
e Interpret scores as conditional probabilities using a

softmax:
efy(x)

pylx) = W

e In practice we consider only log-probabilites:

log p(y[x) = £,(x) — log [Z ef(x)]

23/65

Optimization Techniques

Minimize
W > Clfw(x).y)

(Xt,J/t)

e Gradient descent (“batch”)

OC(fw(xe), vt)

We— W=X) Sy

(xt.yt)

e Stochastic gradient descent

OC(fw(xt). yr)

We— W — X e

e Many variants, including second order techniques (where
the Hessian is approximated)

24/65

Going Deeper

25/65

Deeper: What is the Point? (1/3)
v = u(0) | fa(0) | fa(o) F{ Fale)]

e Share features across the “deep” hierarchy
e Compose these features
e Efficiency: intermediate computations are re-used

[001000010010100 ...] truck feature

26/65

Deeper: What is the Point? (2/3)
Sharing

[100001010000010 ...] motorbike
[001000010010100 ...] truck

27165

Deeper: What is the Point? (3/3)

Composing
prediction of class

high-level

parts an ceoe @O

mid-level
parts

low level
parts

Input image et

(Lee et al.,, 2009)

28/65

Deeper: What are the Issues? (1/2)

Vanishing Gradients

e Chain rule:

of _ Ofi Ofia Ofia Ofy
aW/ a 87171 8fL,2 6‘f/ 6W/

e Because transfer function non-linearities, some Bg# will be

very small, or zero, when back-propagating

e E.g with RelLU

0
y = max(0, x) a—i = 1,0

29/65

Deeper: What are the Issues? (2/2)
Number of Parameters

e A 200 x 200 image with 1000 hidden units leads to 408
parameters

e We would need a lot of training examples

e Spatial correlation is local anyways

30/65

Fix Vanishing Gradient Issue with Unsupervised Training

e Leverage unlabeled data (when there is no y)?
e Popular way to pretrain each layer

e "Auto-encoder/bottleneck” network
¥

1

We

[

e Learn to reconstruct the input
1 (x) = xII?

o Caveats:
e PCAif no W? layer (Bourlard & Kamp, 1988)

(1/2)

e Projected intermediate space must be of lower dimension

31/65

Fix Vanishing Gradient Issue with Unsupervised Training (2/2)

i

We

e Possible improvements:
e No W2 layer, W3 = [W!] T (Bengio et al., 2006)

¢ Noise injection in x
reconstruct the true x (Bengio et al., 2008)

e Impose sparsity constraints
on the projection (Kavukcuoglu et al., 2008)

32/65

Fix Number of Parameters Issue by Generating Examples

(1/2)

e Capacity his too large? Find more training examples L!

Bound on the
Expected Risk

Confidence
Interval

Empirical Risk

h* h

R

R(f)
inf R(F) +
R.(F)

33/65

Fix Number of Parameters Issue by Generating Examples (2/2)

e Concrete example: digit recognition
e Add an (infinite) number of random deformations

(Simard et al, 2003)
O

R E

e State-of-the-art with 9 layers with 1000 hidden units and...
a GPU (Ciresan et al, 2010)

e In general, data augmentation includes
e random translation or rotation
e random left/right flipping
e random scaling

34/65

Convolutional Neural Networks

35/65

2D Convolutions (1/4)

e Share parameters across different locations

(Fukushima, 1980)
(LeCun, 1987)

36/65

2D Convolutions (1/4)

e Share parameters across different locations

A

(Fukushima, 1980)
(LeCun, 1987)

37765

2D Convolutions (1/4)

e Share parameters across different locations

2
/
;

(Fukushima, 1980)
(LeCun, 1987)

38/65

2D Convolutions (2/4)

e Itis like applying a filter to the image...
e ..but the filter is trained

39/65

2D Convolutions (3/4)

e It is again a matrix-vector operation, but where weights
are spatially “shared”

Wes

E»/ We1

e As for normal linear layers, can be stacked for higher-level

representations
filtering
(local representations)

B
%
—
“,
2,
B .
= =5 - = —
- O o — i
e
| | | [|
70x70 35x35 32x32 16x16 12x12 6 1
aa 2 x5 2 26
C luti Subsampling Convoluti Subsampling Convoluti Subsampling Convolution Full Connects
a [« 54 (43 56 fog
B
&>

higher-level representations 20765

2D Convolutions (4/4)

image size dependent

on the architecture Nx1x1 output

Y > %
0:6,%
> %,
Input Image l | I I I I I ’
7272 70x70 3835 3232 16x16 12012 66 Iy
33 22 axd 2 S5 m2 656
C St [«] G G Full Connected
a 52 a 54 (& 56 (e F8
convolution pooling fully connected

41765

Spatial Pooling (1/2)

e "Pooling” (e.g. with a max() operation) increases robustness
w.r.t. spatial location

42/ 65

Spatial Pooling (2/2)

Controls the capacity
e A unit will see “more” of the image, for the same number of
parameters

hn-—l

L Pool.
layer

e adding pooling decreases the size of subsequent fully

connected layers!
43/65

Spatial Pooling

Controls the capacity

e A unit will see “more” of the image, for the same number of

parameters
hn—l

Conv.
layer

X

hn+l

Pool.
layer

~

e adding pooling decreases the size of subsequent fully

connected layers!

447165

Fully Connected Layers

Fully connected layers are a particular type of convolutions
(with a w x h kernel)

45765

Training vs Testing

e Training Phase

Input
Image

e Testing Phase

Input E:;';i;.
Image oee

A

46/65

Training vs Testing

e Training Phase

Input
Image

e Testing Phase
e convolutions are naturally applied to larger input images
e much faster than sliding windows

Input Sase
Imagg Xoes
X

47165

Fancier Architectures

48 /65

Multi-Scale

(Farabet et al.,, 2013) “Learning hierarchical features for scene labeling”
49/ 65

Multi-Modal

shared representation

Text
Embedding

tiger

(Frome et al., 2013) “Devise: a deep visual semantic embedding model”
50/65

Multi-Task

Attr. 1
Attr. 2
image e
- Norm
Attr. N

(Zhang et al., 2014) “PANDA’

51/65

Recurrent Neural Networks (1/3)

e leverage previous output
label scores

e Leverage previous hidden
representations

e Both

(Jordan, 1986) (Elman, 1990)

52/65

Recurrent Neural Networks (2/3)

e Training: unfold network through time
e Weights are shared through time
e Standard backpropagation applies

0(0)

e Note: the loss might include all O(t) Vvt o)

e Must consider the full sequence 1.. T (not real-time)
53/65

Recurrent Neural Networks (3/3)

(Pinheiro et al., 2014) “Recurrent Convolutional Neural Networks for
Scene Labeling” 54765

Graph Transformer Networks
Viterbi Penalty

iterbi
Transformer

Interpretation

T Recognition
rec Transformer

] '- Segmentation
Gseg .\‘. E‘;’Gralph
gl

(Bottou et al.,, 1997) (Lecun et al., 1998)

55/65

Applications

56 /65

Digit Recognition

ot C3:f. maps 16@10x10
1: feature maps sump s 16@5x5
INPUT

s G@28x28

Saia |-r
3
A

120

C5:layer fg: jayer OUTPUT
84 10

| Fun

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Bach plane is a feature map, i.e. a set of units
ined to be identical.

whose weights are constrained to be identic

Err.

(1/2)

rate (

%)

Gaussian SVM
1000 HU NN (MSE)
800 HU NN

CNN

CNN + distortions

NOohwxxr Il
N~PFRNN o=\
PRANDID ~=J
S NS0T\
LOroasQIuy
SN WO &~ &
QMo ~0 pwo
Neg & —] o o £ o
RUxo O
O OO L) —

S
>
G
-
[5¢]
s
~

Fig. 4. Size-normalized examples from the MNIST database.

9 layers NN + distortions

1.4
4.5
1.6
0.8
0.4
0.4

57765

(2/2)

4 < Output
(_FG
9
%)% I 8
E 3
» T~
.

R 2 N - A s

Digit Recognition

(Lecun et al., 1998)

58/65

ImageNet (1/2)

(Deng et al., 2009) “Imagenet: a large scale hierarchical image database”

59/65

ImageNet (2/2)

input label
image

64 128 256 512 512

D Conv. layer: 3x3 filters

I Max pooling layer: 2x2, stride 2

I Fully connected layer: 4096 hiddens

(Krizhevsky et al., 2012) “ImageNet Classification with deep CNNs”

60/65

Texture Classification

X3
-
S0
o T

3
>

L

(Sifre et al., 2013) “Rotation, scaling and deformation invariant
scattering for texture discrimination”

61/65

Object Segmentation

(Farabet et al.,, 2013) “Learning hierarchical features for scene labeling”
(Pinheiro et al.,, 2014) “Recurrent CNN for scene parsing”

62 /65

Action Recognition in Videos

(Taylor et al., 2010) “Convolutional learning of spatio-temporal features”
(Karpathy et al, 2014) “Large-scale video classification with CNNs"

63 /65

Denoising

original denoised

0 W

#

(Burger et al., 2012) “Can plain NNs compete with BM3D?"

64/65

Toolboxes

Torch7 http://torch7.org

Theano http://deeplearning.net/software/theano
Cuda Convnet http://code.google.com/p/cuda-convnet
Caffe http://caffe.berkeleyvision.org

NVIDIA Kernels https://developer.nvidia.com/cuDNN

65/65

http://torch7.org
http://deeplearning.net/software/theano
http://code.google.com/p/cuda-convnet
http://caffe.berkeleyvision.org
https://developer.nvidia.com/cuDNN

