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ABSTRACT

Self-supervised learning (SSL) has shown promise in learn-
ing representations of audio that are useful for automatic
speech recognition (ASR). But, training SSL models like
wav2vec 2.0 requires a two-stage pipeline. In this paper we
demonstrate a single-stage training of ASR models that can
utilize both unlabeled and labeled data. During training, we
alternately minimize two losses: an unsupervised masked
Contrastive Predictive Coding (CPC) loss and the supervised
audio-to-text alignment loss Connectionist Temporal Clas-
sification (CTC). We show that this joint training method
directly optimizes performance for the downstream ASR task
using unsupervised data while achieving similar word error
rates to wav2vec 2.0 on the Librispeech 100-hours dataset.
Finally, we postulate that solving the contrastive task is a
regularization for the supervised CTC loss.

Index Terms— Self-supervision, Contrastive learning,
Joint training, Semi-supervised, Speech recognition

1. INTRODUCTION

Deep learning has been impactful in building state-of-the-art
end-to-end speech recognition systems [1, 2, 3]. But, they
typically require large amounts of annotated speech data in
the form of transcripts. Whereas, humans are able to learn
language and speech with little supervision.

Recently, self-supervised learning (SSL) has been pro-
posed as a method for training automatic speech recogni-
tion (ASR) models by pre-training on large amount of unla-
beled data and then fine-tuning the speech recognition model
on labeled data, for example contrastive predictive coding
(CPC) [4]. While these methods [5, 6] have achieved im-
pressive results on low-resource speech datasets, their goal
is to learn speech representations that are useful for multi-
ple speech-related tasks. Training an ASR model using SSL
methods is a two-stage process as it requires running separate
pre-training and fine-tuning experiments and jointly tuning
hyperparameters for both stages. It is unclear how much pre-
training is required to achieve reasonable performance on the
downstream task of speech recognition.

In this paper, we propose a training method for ASR mod-
els that combines SSL and supervised learning in a single
stage. The model is trained by jointly minimizing a loss on la-

Algorithm 1: Alternating minimization algorithm.
Data: Labeled data L = {x,y}, Unlabeled data

U = {x}
Result: Acoustic model pθ
Randomly initialize parameters of the acoustic
model pθ;

repeat
repeat

1. Forward the model with Eq. (1) and (2)
obtaining z and z̃

2. Compute gu = ∇θLu(θ,x) using z, z̃
3. Update pθ with ηu and gu

until N times for x ∈ U ;
4. Forward the model for x ∈ L with Eq. (1)-(3)

obtaining pθ(y|x)
5. Compute gs = ∇θLs(θ,x,y) using pθ(y|x)
6. Update pθ with ηs and gs

until convergence in word error rate or maximum
iterations are reached;

beled data, and a loss on unlabeled data. The supervised loss
is the Connectionist Temporal Classification (CTC) loss [7],
while the unsupervised loss is based on a masked variant of
CPC. As both losses are optimized jointly, our method allows
early stopping by measuring the performance of the model for
the downstream task on the validation dataset.

We show that a model trained using our method (with
no quantization) achieves equivalent word error rate (WER)
when trained on 960-hours of unlabeled data and 100-hours
of labeled data to a model that is trained using the two-stage
process of wav2vec 2.0 [8] (with quantization), which is a
method based on masked CPC. Additionally, we verify that
our method provides a regularization to the supervised loss
when only using labeled data.

2. JOINT TRAINING

We propose to train our speech recognition model in a single
stage, by jointly minimizing a supervised and an unsupervised
loss. Our training procedure alternates between minimizing
the unsupervised loss on unlabeled data and minimizing the
supervised loss on labeled data.
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2.1. Model

Our model is a neural network architecture which gets as
input raw audio (x) and outputs token (y) probabilities
pθ(yt|x) at time t with the following functions:

z = f(x) (1)
z̃ = g(mask(z)) (2)

pθ(y|x) = h(z̃). (3)

where a convolutional encoder f : X → Z maps raw input
audio into features at 20ms stride with a receptive field 30ms.
These encoder features z (with optional masking of certain
frames) are passed as input into a transformer-based [9] con-
text network with full attention g : Z → Z̃. Finally, the
context features z̃ are used to generate output token probabil-
ities pθ(yt|x) at time frame t using a linear layer and softmax
non-linearity h : Z̃ → Y .

2.2. Unsupervised and supervised losses

The supervised loss is CTC [7], denoted as Ls(θ,x,y) in
the paper. The unsupervised loss is the self-supervision loss
used for pre-training in wav2vec [8]. This loss can be viewed
as a contrastive predictive coding [4] loss, where the task is
to predict the masked encoder features [10] rather than pre-
dicting future encoder features given past encoder features.
In this loss, a certain percentage of the encoder features z
(controlled by the masking probability) are masked at time
frames ti1 , ti2 , ..., tiT , where i1, i2, ..., iT denote the mask-
ing indices. The features, for example zti1 , are masked by
replacing it with a learnt mask embedding. The masked en-
coder features ẑ = mask(z) are passed as input to the context
network, which is responsible for reproducing the features z.
The accuracy of reproduction is measured using a contrastive
loss by comparing the similarity between the predicted fea-
tures z̃ from the context network at masked indices (anchor)
and the input features z of the context network at masked in-
dices (positive sample) against other encoder features at non-
masked indices (negative samples):

Lu(θ,x) =
1

T

∑
t

−log
s
(
zt, z̃t

)
s
(
zt, z̃t

)
+
∑
t′ s
(
zt′ , z̃t

) (4)

where s(zt, z̃t) = 1
τ exp(

zt·z̃t
‖zt‖‖z̃t‖ ). The time frame t denotes

the index of the T masked features, zt′ are encoder features
sampled from time frames t′ other than time frame t, τ is a
tunable hyperparameter called temperature.

2.3. Alternate minimization

The model is trained by alternately minimizing the two losses.
Using a minibatch from the unlabeled data, the gradient of the
unsupervised loss is used to update the model parameters for

N steps, followed by the gradient of the supervised loss (us-
ing a minibatch from labeled data) for 1 step. This process is
repeated until convergence of the word error rate on the vali-
dation dataset. A brief description is shown in Algorithm 1.

Separate adaptive momentum optimizers are used for each
of the two losses with different learning rates: ηu for the un-
supervised loss and ηs for the supervised loss. The two op-
timizers maintain their state independently, while sharing the
parameters of the model. This ensures that the momentum
averaging for one loss is not affected by the gradient updates
from the other loss, leading to faster convergence. Experi-
ments with a single optimizer show worse performance on the
downstream task compared to the usage of two optimizers.

The ratio of unsupervised to supervised loss updates,N :1,
is chosen to be 1:1. This results in equal opportunity for the
unsupervised and supervised tasks to affect the weights of the
network as a function of the total number of updates. Choos-
ing an update ratio that favors the unsupervised task results in
a more computationally expensive training. While, an update
ratio that is biased towards the supervised task produces an
ASR model that does not improve over a supervised baseline.

The learning rate ratio is biased towards the unsupervised
task as compared to the supervised task. Using a learning rate
ratio of 1:1 or one that favors the supervised task results in an
ASR model that does not improve over a supervised baseline.

3. EXPERIMENTAL SETUP

3.1. Datasets

The experiments use the Librispeech [11] 960-hours dataset
as the unsupervised dataset. The supervised dataset is a subset
of Librispeech: either 100-hours or 960-hours (full). During
training, samples in the dataset that are smaller than 2 seconds
or longer than 33 seconds are filtered out. The performance of
the trained model is validated on the dev-clean/other datasets
of Librispeech and tested on the test-clean/other datasets.

3.2. Architecture details

Similar to wav2vec 2.0 [8], the convolutional encoder net-
work consists of a stack of 7 convolutions with kernel size
(10, 3, 3, 3, 3, 2, 2) and strides (5, 2, 2, 2, 2, 2, 2) respectively.
The number of input and output channels in the convolution
is 512. Additionally, the input audio is normalized in the time
dimension before it is passed into the convolutional encoder.

We use two versions of the model, BASE and LARGE. The
transformer context network for the BASE model is composed
of a convolutional relative positional embedding layer with
kernel size 128 and group size 16, followed by a stack of 12
transformer layers with 8 heads. The hidden dimension is 768
and the feed-forward network dimension is 3072. Each trans-
former layer uses layer dropout [12] with probability 0.05 and
dropout with probability 0.1. The transformer context net-
work for the LARGE model uses a stack of 24 transformer



Table 1. Word error rates of models trained on the Lib-
rispeech 960-hours unlabeled and 100-hours labeled datasets.

Method LM
Dev Test

clean other clean other

Noisy student [3] LSTM 3.9 8.8 4.2 8.6

wav2vec BASE None 6.1 13.5 6.1 13.3
(quantized) [8] 4-gram 2.7 7.9 3.4 8.0

Transf. 2.6 7.0 2.9 6.8

wav2vec BASE None 6.0 14.3 6.1 14.6
(continuous, 4-gram 3.2 8.9 3.6 9.0
reproduction) Transf. 1.9 8.1 3.1 7.9

Joint BASE None 6.1 13.7 6.2 13.9
(continuous) 4-gram 3.0 7.7 3.4 8.4

Transf. 2.1 6.4 2.7 6.8

Table 2. Word error rates of models trained on the Lib-
rispeech 960-hours unlabeled and 100-hours labeled datasets.

Method LM
Dev Test

clean other clean other

Noisy student [3] LSTM 3.9 8.8 4.2 8.6

wav2vec LARGE None 4.6 9.3 4.7 9.0
(quantized) [8] 4-gram 2.3 5.7 2.8 6.0

Transf. 2.1 4.8 2.3 5.0

Joint LARGE None 4.2 8.9 4.3 9.2
(continuous) 4-gram 2.6 6.1 3.0 6.5

Transf. 2.0 5.1 2.5 5.3

layers with 16 heads. The hidden dimension is 1024 and the
feed-forward network dimension is 4096. Each transformer
layer uses layer dropout with probability 0.2 and dropout with
probability 0.1. The linear classifier is trained to output letter-
based tokens, which consist of 26 English alphabet letters,
augmented with the apostrophe and a word boundary token.
The total number of parameters for the BASE model is 94.3M
and the LARGE model is 315M. The masking probability is
0.075 for the BASE model and 0.065 for the LARGE model.
The number of masked tokens per sample is 10. The number
of negative samples used in the contrastive loss is 100 and the
temperature is 0.1. A variation of SpecAugment [13] that uses
the same masking procedure as the contrastive loss is used for
data augmentation in the ASR task.

3.3. Training

The model is trained using the Adam optimizer ([14]) for both
losses with β1 = 0.9, β2 = 0.98, ε = 10−6 and weight decay
0.01. The gradient for the convolutional encoder is scaled by
0.1 for each of the two losses. The ratio of unsupervised to
supervised loss updates is set to 1:1. The learning rate (LR)
for the unsupervised loss is 5 × 10−4 and for the supervised

loss is 2.5×10−5 for the BASE model, whereas the LR for the
unsupervised loss is 3 × 10−4 and for the supervised loss is
2×10−5 for LARGE model when using the 100-hours dataset
as the labeled data. The LR for the unsupervised loss is 5 ×
10−4 and for the supervised loss is 1 × 10−4 for the BASE
model when using the 960-hours dataset as the labeled data.

The total number of updates is 500K. The LR for the both
losses is warmed up from 0 to their respective values in 20K
updates. After the warmup period, the LR of the unsupervised
loss ηu is decayed to 0.1ηu at the end of training, whereas
the LR of the supervised loss is kept constant. SpecAugment
in the supervised loss update is activated after the warmup
period.

Training is performed on 64 V100 GPUs with a batch
size per GPU equal to 87.5s of audio for the BASE model
and on 256 V100 GPUs with a batch size per GPU equal
to 40s of audio for the LARGE model. The audio samples
are batched together such that the total length of the samples
does not exceed the batch size. The model is trained using the
wav2letter++ toolkit [15] for approximately 4 days.

3.4. Beam-search decoding and rescoring

Besides reporting word error rate (WER) without a language
model (LM), we also perform a one-pass beam-search de-
coder with a 4-gram word-level LM [16] and further the beam
rescoring with a strong word-level Transformer LM [17].
We rely on the beam-search decoder from the wav2letter++
toolkit [15] and follow the procedure from [17].

4. RESULTS AND DISCUSSION

4.1. Evaluation on standard SSL datasets

The single-stage training pipeline is evaluated in a setting
where there is a large amount of unlabeled data compared to
labeled data.

Table 1 shows word error rates (with and without an LM,
see Section 3.4) for the BASE model trained on Librispeech
960-hours unlabeled data and 100-hours labeled data. The
joint training procedure generates an ASR model that matches
the WER of the wav2vec 2.0 BASE model on both the test-
clean and test-other datasets. Unlike the wav2vec 2.0 model,
this model does not include quantization, operates in the
continuous space and does not use any unsupervised loss
penalty terms during training. Using the two-stage pipeline
of wav2vec 2.0 (reproduced in wav2letter++) to train the
continuous BASE model results in slightly worse ASR perfor-
mance compared to the quantized wav2vec 2.0 BASE model.

Table 2 shows word error rates (with and without an LM,
see Section 3.4) for the LARGE model trained on Librispeech
960-hours unlabeled data and 100-hours labeled data. The
joint training procedure generates an ASR model that matches
the WER of the wav2vec 2.0 LARGE model on both the test-
clean and test-other datasets.



4.2. Effect of hyperparameters on downstream task

Table 3 shows the effect of different hyperparameters on the
ASR performance of the model trained using the single-stage
training method. All models are trained for 500K updates
using the Librispeech 960-hours dataset as the unsupervised
dataset and the 100-hours dataset as the supervised dataset.
The baseline model uses a Lu to Ls update ratio equal to
1:1, Lu to Ls learning rate ratio equal to 20:1 and separate
optimizers for each of the two losses. Using a lower Lu to
Ls learning rate ratio or using a single optimizer results in a
higher WER on the dev-other dataset compared to the base-
line. The training pipeline is not sensitive to the update ratio
as can be seen by the negligible difference in WER between
the models with a Lu to Ls loss update ratio 1:1 and 5:1.

Table 3. Word error rate (dev-other dataset, 4-gram LM) of
models with different hyperparameters compared to baseline.

Hyperparameter Updates LR dev-other

Baseline 1:1 20:1 8.0
Lu to Ls update ratio 5:1 20:1 7.9

Lu to Ls learning rate ratio 1:1 4:1 9.0
Single optimizer 1:1 20:1 11.1

4.3. Regularization effect on supervised loss

Figure 1 shows a plot of the unsupervised loss Lu and the
supervised loss Ls on the train (Librispeech 960-hours) and
validation (Librispeech dev-other) datasets as a function of
total number of updates for the BASE model trained using ei-
ther joint training or supervised only training. Both models
are trained for the same total number of updates, 500K. The
supervised loss attains a lower value on the validation dataset
and a higher value on the train dataset with joint training in
comparison to supervised only training. Furthermore, Table 4
shows that a model trained using joint training achieves lower
WER (with and without an LM) compared to a model trained
using supervised loss only, even though it has a lower num-
ber of updates from this loss. This suggests that our method
provides a regularizing effect to the supervised loss.

5. RELATED WORK

This paper draws upon recent advances in self-supervised
contrastive learning [4, 18, 19]. It uses the principle of con-
trastive learning: similarity between an anchor and positive
samples is compared against similarity with negative sam-
ples. But, the goal of self-supervised learning is to learn
representations that are useful for multiple downstream tasks.
Whereas, our method is designed to maximize performance
on a single downstream task.

More broadly, our single-stage training method can be
linked to semi-supervised learning or self-training methods
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Fig. 1. Unsupervised Lu and supervised Ls loss behaviour on
the train (solid) and validation (dotted) sets for joint training
(Lu-black, Ls-green) and supervised only training (Ls-blue).

Table 4. Word error rates of models trained on Librispeech
960-hours labeled dataset.

Method LM
Dev Test

clean other clean other

Supervised
None 3.2 10.8 3.4 10.4

4-gram 2.1 7.2 2.7 7.2
Transf. 1.5 5.4 2.2 5.6

Joint training
None 3.4 9.0 3.6 9.2

4-gram 2.1 5.8 2.6 6.3
Transf. 1.5 4.4 2.1 4.8

[20, 2, 21, 3, 22] for ASR. These methods bootstrap an acous-
tic model (AM) from transcriptions (labeled data), transcribe
unlabeled audio with the trained AM (optionally with the
help of an LM) and then retrain the AM on the generated
pseudo-labels. Self-training methods are complementary to
our method and there is potential to combine the two methods.

As our approach addresses both, a contrastive learning
task and speech recognition task, this paper is related to the
field of multi-task learning [23, 24]. Recent approaches to
multi-task learning [25, 26] solve the tasks by minimizing
a loss, containing multiple terms, on the same supervised
datasets. Whereas, in our method, the unsupervised and
supervised losses are minimized on their respective datasets.

6. CONCLUSION

Our single-stage training method simplifies the process for
learning speech recognition models jointly from labeled and
unlabeled data and allows directly optimizing the model on
the downstream task. Furthermore, the trained models match
the performance of state of the art self-supervised models for
speech that use a two-stage pipeline. Finally, we demonstrate
that solving the contrastive task provides a regularizing effect
on the supervised loss when only using a labeled dataset.

Finally, we would like to thank Alexei Baevski and
Michael Auli for helpful discussions regarding wav2vec 2.0.
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