
Learning to Refine Object Segments

Pedro O. Pinheiro?, Tsung-Yi Lin?, Ronan Collobert, Piotr Dollár

Facebook AI Research (FAIR)

Abstract. Object segmentation requires both object-level information
and low-level pixel data. This presents a challenge for feedforward net-
works: lower layers in convolutional nets capture rich spatial informa-
tion, while upper layers encode object-level knowledge but are invariant
to factors such as pose and appearance. In this work we propose to aug-
ment feedforward nets for object segmentation with a novel top-down
refinement approach. The resulting bottom-up/top-down architecture is
capable of efficiently generating high-fidelity object masks. Similarly to
skip connections, our approach leverages features at all layers of the net.
Unlike skip connections, our approach does not attempt to output inde-
pendent predictions at each layer. Instead, we first output a coarse ‘mask
encoding’ in a feedforward pass, then refine this mask encoding in a top-
down pass utilizing features at successively lower layers. The approach
is simple, fast, and effective. Building on the recent DeepMask network
for generating object proposals, we show accuracy improvements of 10-
20% in average recall for various setups. Additionally, by optimizing the
overall network architecture, our approach, which we call SharpMask, is
50% faster than the original DeepMask network (under .8s per image).

1 Introduction

As object detection [1–8] has rapidly progressed, there has been a renewed inter-
est in object instance segmentation [9]. As the name implies, the goal is to both
detect and segment each individual object. The task is related to both object
detection with bounding boxes [9–11] and semantic segmentation [10, 12–19].
It involves challenges from both domains, requiring accurate pixel-level object
segmentation coupled with identification of each individual object instance.

A number of recent papers have explored the use convolutional neural net-
works (CNNs) [20] for object instance segmentation [21–24]. Standard feedfor-
ward CNNs [25–28] interleave convolutional layers (with pointwise nonlinearities)
and pooling layers. Pooling controls model capacity and increases receptive field
size, resulting in a coarse, highly-semantic feature representation. While effective
and necessary for extracting object-level information, this general architecture
results in low resolution features that are invariant to pixel-level variations. This
is beneficial for classification and identifying object instances but poses challenge
for pixel-labeling tasks. Hence, CNNs that utilize only upper network layers for

?
Authors contributed equally to this work while at FAIR. Current affiliations: Pedro O. Pinheiro
is with the Idiap Research Institute and Ecole Polytechnique Fédérale de Lausanne (EPFL);
Tsung-Yi Lin is with Cornell University and Cornell Tech.

2 Pinheiro, Lin, Collobert, Dollár

mx1x1

14x14

28x28

56x56

112x112

224x224

(a)	feedforward (b)	feedforward	+	skip (c)	proposed	network (d)	refinement	module

224x224

56x56

R4

56x56

28x28

14x14

112x112

112x112

R3

56x5656x56

R2

28x2828x28

R1

14x14

224x224

56x56

28x28

14x14

112x112

+

224x224

56x56

28x28

14x14

112x112

3x3	
conv

2x	 			
up

28x28

Si
Mi

3x3	
conv	

Fi

28x28

28x28

Mi

56x56

Mi+1

mx1x1

Fig. 1: Architectures for object instance segmentation. (a) Feedforward nets, such
as DeepMask [22], predict masks using only upper-layer CNN features, resulting
in coarse pixel masks. (b) Common ‘skip’ architectures are equivalent to making
independent predictions from each layer and averaging the results [24, 29, 30],
such an approach is not well suited for object instance segmentation. (c,d) In
this work we propose to augment feedforward nets with a novel top-down re-
finement approach. The resulting bottom-up/top-down architecture is capable
of efficiently generating high-fidelity object masks.

object instance segmentation [21–23], as in Figure 1a, can effectively generate
coarse object masks but have difficulty generating pixel-accurate segmentations.

For pixel-labeling tasks such as semantic segmentation and edge detection,
‘skip’ connections [24, 29–31], as shown in Figure 1b, are popular. In practice,
common skip architectures are equivalent to making independent predictions
from each network layer and upsampling and averaging the results (see Fig. 2
in [24], Fig. 3 in [29], and Fig. 3 in [30]). This is effective for semantic segmenta-
tion as local receptive fields in early layers can provide sufficient data for pixel
labeling. For object segmentation, however, it is necessary to differentiate be-
tween object instances, for which local receptive fields are insufficient (e.g. local
patches of sheep fur can be labeled as such but without object-level information
it can be difficult to determine if they belong to the same animal).

In this paper, we propose a novel CNN which efficiently merges the spatially
rich information from low-level features with the high-level object knowledge
encoded in upper network layers. Rather than generating independent outputs
from multiple network layers, our approach first generates a coarse mask encod-
ing in a feedforward manner, which is simply a semantically meaningful feature
map with multiple channels, then refines it by successively integrating informa-
tion from earlier layers. Specifically, we introduce a refinement module and stack
successive such modules together into a top-down refinement process. See Fig-

Learning to Refine Object Segments 3

ures 1c and 1d. Each refinement module is responsible for ‘inverting’ the effect of
pooling by taking a mask encoding generated in the top-down pass, along with
the matching features from the bottom-up pass, and merging the information in
both to generate a new mask encoding with double the spatial resolution. The
process continues until full resolution is restored and the final output encodes
the object mask. The refinement module is efficient and fully backpropable.

We apply our approach in the context of object proposal generation [32–38].
The seminal object detection work on R-CNN [5] follows a two-phase approach:
first, an object proposal algorithm is used to find regions in images that may
contain objects; second, a CNN assigns each proposal a category label. While
originally object proposals were constructed from low-level grouping and saliency
cues [38], recently CNNs have been adopted for this task [3, 7, 22], leading to
massive improvements in detection accuracy. In particular, Pinheiro et al. [22]
demonstrated how to adopt a CNN to generate rich object instance segmenta-
tions in an image. The proposed model, called DeepMask, predicts how likely an
image patch is to fully contain a centered object and also outputs an associated
segmentation mask for the object, if present. The model is run convolutionally
to generate a dense set of object proposals for an image. DeepMask outperforms
previous object segment proposal methods by a substantial margin [22].

In this work we utilize the DeepMask architecture as our starting point for
object instance segmentation due to its simplicity and effectiveness. We augment
the basic DeepMask architecture with our refinement module (see Figure 1) and
refer to the resulting approach as SharpMask to emphasize its ability to produce
sharper, higher-fidelity object segmentation masks. In addition to the top-down
refinement, we also revisit the basic bottom-up architecture of the DeepMask
network and likewise optimize it for the segmentation task.

SharpMask improves segmentation mask quality relative to DeepMask. For
object proposal generation, average recall on the COCO dataset [9] improves 10-
20% and establishes the new state-of-the-art on this task. Moreover, we optimize
our core architecture and improve speed by 50% with respect to DeepMask, with
an average of .76s per image. Our fast model, which still outperforms previous
results, runs at .46s, or, by using additional image scales, we can boost small ob-
ject recall by ∼2×. Finally we show SharpMask proposals substantially improve
object detection results when coupled with the Fast R-CNN detector [6].

The paper is organized as follows: §2 presents related work, §3 introduces our
novel top-down refinement network, §4 describes optimizations to the network
architecture, and finally §5 validates our approach experimentally.

All source code for reproducing the methods in this paper will be released.

2 Related Work

Following their success in image classification [25–28], CNNs have been adopted
with great effect to pixel-labeling tasks such as depth estimation [15], optical
flow [39], and semantic segmentation [13]. Below we describe architectural in-
novations for such tasks, and discuss how they relate to our approach. Aside

4 Pinheiro, Lin, Collobert, Dollár

from skip connections [24, 29–31], which were discussed in §1, these techniques
can be roughly classified as multiscale architectures, deconvolutional networks,
and graphical model networks. We discuss each in turn next. We emphasize,
however, that most of these approaches are not applicable to our domain due
to severe computational constraints: we must refine hundreds of proposals per
image implying the marginal time per proposal must be minimal.

Multiscale architectures: [13–15] compute features over multiple rescaled
versions of an image. Features can be computed independently at each scale [13],
or the output from one scale can be used as additional input to the next finer
scale [14,15]. Our approach relies on similar intuition but does not require recom-
puting features at each image scale. This allows us to apply refinement efficiently
to hundreds of locations per image as necessary for object proposal generation.

Deconvolutional networks: [40] proposed to invert the pooling process
in a CNN to generate progressively higher resolution input images by storing
the ‘switch’ variables from the pooling operation. Deconv networks have re-
cently been applied successfully to semantic segmentation [19]. Deconv layers
share similarities with our refinement module, however, ‘switches’ are commu-
nicated instead of the feature values, which limits the information that can be
transferred. Finally, [39] proposed to progressively increase the resolution of an
optical flow map. This can be seen as a special case of our refinement approach
where: (1) the ‘features’ for refinement are set to be the flow field itself, (2) no
feature transform is applied to the bottom-up features, and (3) the approach
is applied monolithically to the entire image. Restricting our method in any of
these ways would cause it to fail in our setting as discussed in §5.

Graphical model networks: a number of recent papers have proposed
integrating graphical models into CNNs by demonstrating they can be formu-
lated as recurrent nets [16–18]. Good results were demonstrated on semantic
segmentation. While too slow to apply to multiple proposals per image, these
approaches likewise attempt to sharpen a coarse segmentation mask.

3 Learning Mask Refinement

We apply our proposed bottom-up/top-down refinement architecture to object
instance segmentation. Specifically, we focus on object proposal generation [38],
which forms the cornerstone of modern object detection [5]. We note that al-
though we test the proposed refinement architecture on the task of object seg-
mentation, it could potentially be applied to other pixel-labeling tasks.

Object proposal algorithms aim to find diverse regions in an image which are
likely to contain objects; both proposal recall and quality correlate strongly with
detector performance [38]. We adopt the DeepMask network [22] as the starting
point for proposal generation. DeepMask is trained to jointly generate a class-
agnostic object mask and an associated ‘objectness’ score for each input image
patch. At inference time, the model is run convolutionally to generate a dense
set of scored segmentation proposals. We refer readers to [22] for full details.

Learning to Refine Object Segments 5

(a) DeepMask Output (b) SharpMask Output

Fig. 2: Qualitative comparison of DeepMask versus SharpMask segmentations.
Proposals with highest IoU to the ground truth are shown for each method. Both
DeepMask and SharpMask generate object masks that capture the general shape
of the objects. However, SharpMask improves the masks near object boundaries.

A simplified diagram of the segmentation branch of DeepMask is illustrated
in Figure 1a. The network is trained to infer the mask for the object located
in the center of the input patch. It contains a series of convolutional layers
interleaved with pooling stages that reduce the spatial dimensions of the feature
maps, followed by a fully connected layer to generate the object mask. Hence,
each pixel prediction is based on a complete view of the object, however, its
input feature resolution is low due to the multiple pooling stages.

As a result, DeepMask generates masks that are accurate on the object level
but only coarsely align with object boundaries, see Figure 2a. In order to obtain
higher-quality masks, we augment the basic DeepMask architecture with our re-
finement approach. We refer to the resulting method as SharpMask to emphasize
its ability to produce sharper, pixel-accurate object masks, see Figure 2b. We
begin with a high-level overview of our approach followed by further details.

3.1 Refinement Overview

Our goal is to efficiently merge the spatially rich information from low-level fea-
tures with the high-level semantic information encoded in upper network layers.
Three principles guide our approach: (1) object-level information is often nec-
essary to segment an object, (2) given object-level information, segmentation
should proceed in a top-down fashion, successively integrating information from
earlier layers, and (3) the approach should invert the loss of resolution from
pooling (with the final output matching the resolution of the input).

To satisfy these principles, we augment standard feedforward nets with a top-
down refinement process. An overview of our approach is shown in Figure 1c.
We introduce a ‘refinement module’ R that is responsible for inverting the effect
of pooling and doubling the resolution of the input mask encoding. Each module

6 Pinheiro, Lin, Collobert, Dollár

Ri takes as input a mask encoding M i generated in the top-down pass, along
with matching features F i generated in the bottom-up pass, and learns to merge
the information to generate a new upsampled object encoding M i+1. In other
words: M i+1 = Ri(M i, F i), see Figure 1d. Multiple such modules are stacked
(one module per pooling layer). The final output of our network is a pixel labeling
of the same resolution as the input image. We present full details next.

3.2 Refinement Details

The feedforward pathway of our network outputs a ‘mask encoding’ M1, or sim-
ply, a low-resolution but semantically meaningful feature map with k1

m channels.
M1 serves as the input to the top-down refinement module, which is responsi-
ble for progressively increasing the mask encoding’s resolution. Note that using
k1
m > 1 allows the mask encoding to capture more information than a simple

segmentation mask, which proves to be key for obtaining good accuracy.
Each refinement module Ri aggregates information from a coarse mask en-

coding M i and features F i from the corresponding layer of the bottom-up com-
putation (we always use the last convolutional layer prior to pooling). By con-
struction, M i and F i have the same spatial dimensions; the goal of Ri is to
generate a new mask encoding M i+1 with double spatial resolution based on in-
puts M i and F i. We denote this via M i+1 = Ri(M i, F i). This process is applied
iteratively n times (where n is the number of pooling stages) until the feature
map has the same dimensions as the input image patch. Each module Ri has
separate parameters, allowing the network to learn stage-specific refinements.

The refinement module aims to enhance the mask encoding M i using features
F i. As M i and F i have the same spatial dimensions, one option is to first simply
concatenate M i and F i. However, directly concatenating F i with M i poses two
challenges. Let kim and kif be the number of channels in M i and F i respectively.

Typically, kif can be quite large in modern CNNs, so using F i directly would be

computationally expensive. Second, typically kif � kim, so directly concatenating

the features maps risks drowning out the signal in M i.
Instead, we opt to first reduce the number of channels kif (but preserving the

spatial dimensions) of these features through a 3× 3 convolutional module (plus
ReLU), generating ‘skip’ features Si, with kis � kif channels. This substantially
reduces computational requirements, moreover, it allows the network to trans-
form F i into a form Si more suitable for use in refinement. An important but
subtle point is that during full image inference, as with the features F i, skip fea-
tures are shared by overlapping image patches, making them highly efficient to
compute. In contrast, the remaining computations of Ri are patch dependent as
they depend on the local mask M i and hence cannot be shared across locations.

The refinement module concatenates mask encoding M i with skip features
Si resulting in a feature map with kim + kis channels, and applies another 3× 3
convolution (plus ReLU) to the result. Finally, the output is upsampled using
bilinear upsampling by a factor of 2, resulting in a new mask encoding M i+1

with ki+1
m channels (ki+1

m is determined by the number of 3 × 3 kernels used

Learning to Refine Object Segments 7

for the convolution). As with the convolution for generating the skip features,
this transformation is used to simultaneously learn a nonlinear mask encoding
from the concatenated features and to control the capacity of the model. Please
see Figure 1d for a complete overview of the refinement module R. Further
optimizations to R are possible, for details see Figure 7.

Note that the refinement module uses only convolution, ReLU, bilinear up-
sampling, and concatenation, hence it is fully backpropable and highly efficient.
In §5.2, we analyze different architecture choices for the refinement module in
terms of performance and speed. As a general design principle, we aim to keep kis
and kim large enough to capture rich information but small enough to keep com-
putation low. In particular, we can start with a fairly large number of channels
but as spatial resolution is increased the number of channels should decrease.
This reverses the typical design of feedforward networks where spatial resolution
decreases while the number of channels increases with increasing depth.

3.3 Training and Inference

We train SharpMask with an identical data definition and loss function as the
original DeepMask model. Each training sample is a triplet containing an input
patch, a label specifying if the input patch contains a centered object at the
correct scale, and for positive samples a binary object mask. The network trunk
parameters are initialized with a network that was pre-trained on ImageNet [11].
All the other layers are initialized randomly from a uniform distribution.

Training proceeds in two stages: first, the model is trained to jointly infer a
coarse pixel-wise segmentation mask and an object score, second, the feedforward
path is ‘frozen’ and the refinement modules trained. The first training stage
is identical to [22]. Once learning of the first stage converges, the final mask
prediction layer of the feedforward network is removed and replaced with a linear
layer that generates a mask encoding M1 in place of the actual mask output.
We then add the refinement modules to the network and train using standard
stochastic gradient descent, backpropagating the error only on the horizontal
and vertical convolution layers on each of the n refinement modules.

This two-stage training procedure was selected for three reasons. First, we
found it led to faster convergence. Second, at inference time, a single network
trained in this manner can be used to generate either a coarse mask using the
forward path only or a sharp mask using our bottom-up/top-down approach.
Third, we found the gains of fine-tuning through the entire network to be minimal
once the forward branch had converged.

During full-image inference, similarly to [22], most computation for neigh-
boring windows is shared through use of convolution, including for skip layers
Si. However, as discussed, the refinement modules receive a unique input M1

at each spatial location, hence, computation proceeds independently at each lo-
cation for this stage. Rather than refine every proposal, we simply refine only
the most promising locations. Specifically, we select the top N scoring proposal
windows and apply the refinement in a batch mode to these top N locations.

To further clarify all implementation details, full source code will be released.

8 Pinheiro, Lin, Collobert, Dollár

4 Feedforward Architecture

While the focus of our work is on top-down mask refinement, to obtain a bet-
ter understanding of object segmentation we also explore factors that effect a
feedforward network’s ability to generate accurate object masks. In the next two
subsections we carefully examine the design of the network ‘trunk’ and ‘head’.

4.1 Trunk Architecture

We begin by identifying model bottlenecks. DeepMask spends 40% of its time for
feature extraction, 40% for mask prediction, and 20% for score prediction. Given
the time of feature extraction, increasing model depth or breadth can incur a
non-trivial computational cost. Simply upgrading the 11-layer VGG-A model [26]
used in [22] to the 16-layer VGG-D model can double run time. Recently He et
al. [28] introduced Residual Networks (ResNet) and showed excellent results. In
this work, we use the 50-layer ResNet model pre-trained on ImageNet, which
achieves the accuracy of VGG-D but with the inference time of VGG-A.

We explore models with varying input size W, number of pooling layers P,
stride density S, model depth D, and final number of features channels F. These
factors are intertwined but we can achieve significant insight by a targeted study.

Input size W: Given a minimum object size O, the input image needs to be
upsampled by W/O to detect small objects. Hence, reducing W improves speed
of both mask prediction and inference for small objects. However, smaller W re-
duces the input resolution which in turn lowers the accuracy of mask prediction.
Moreover, reducing W decreases stride density S which further harms accuracy.

Pooling layers P: Assuming 2× 2 pooling, the final kernel width is W/2P.
During inference, this necessitates convolving with a large W/2P kernel in order
to aggregate information (e.g., 14 × 14 for DeepMask). However, while more
pooling P results in faster computation, it also results in loss of feature resolution.

Stride density S: We define the stride density to be S=W/stride (where
typically stride is 2P). The smaller the stride, the denser the overlap with ground
truth locations. We found that the stride density is key for mask prediction.
Doubling the stride while keeping W constant greatly reduces performance as
the model must be more spatially invariant relative to a fixed object size.

Depth D: For typical networks [25–28], spatial resolution decreases with
increasing D while the number of features channels F increases. In the context
of instance segmentation, reducing spatial resolution hurts performance. One
possible direction is to start with lower layers that have less pooling and increase
the depth of the model without reducing spatial resolution or increasing F. This
would require training networks from scratch which we leave to future work.

Feature channels F: The high dimensional features at the top layer intro-
duce a bottleneck for feature aggregation. An efficient approach is to first apply
dimensionality reduction before feature aggregation. We adopt 1×1 convolution
to reduce F and show that we can achieve large speedups in this manner.

In §5.1 and Table 1 we examine various choices for W, P, S, D, and F.

Learning to Refine Object Segments 9

128x
10x10

128x
10x10

1x1	
conv

128x
10x10

1x1	
conv

(b)	head	A

512x1x1

1024x1x1

1x1	score

512x1x1

512x
14x14

512x
7x7

2x2				
pool

1x1	
conv

(a)	original

512x1x1

1024x1x1

1x1	score

512x1x1

(d)	head	C

1024x1x1

1x1	score

128x
10x10

(c)	head	B

512x1x1

1024x1x1

1x1	score

512x1x1

1x1	
conv

1x1	
conv

512x1x1

Fig. 3: Network head architecture. (a) The original DeepMask head. (b-d) Vari-
ous head options with increasing simplicity and speed. The heads share identical
pathways for mask prediction but have progressively simplified score branches.

4.2 Head Architecture

We also examine the ‘head’ of the DeepMask model, focusing on score prediction.
Our goal is to simplify the head and further improve inference speed.

In DeepMask, the mask and scoring heads branch after the final 512×14×14
feature map (see Figure 3a). Both mask and score prediction require a large
convolution, and in addition, the score branch requires an extra pooling step
and hence interleaving to match the stride of the mask network during inference.
Overall, this leads to a fairly inelegant and slow inference procedure.

We propose a sequence of simplified network structures that have identical
mask branches but that share progressively more computation. A series of model
heads A-C is detailed in Figure 3. Head A removes the need for interleaving in
DeepMask by removing max pooling and replacing the 512× 7× 7 convolutions
by 128 × 10 × 10 convolutions; overall this network is much faster. Head B
simplifies this by having the 128×10×10 features shared by both the mask and
score branch. Finally, model C further reduces computation by having the score
prediction utilize the same low rank 512× 1× 1 features used for the mask.

In §5.1 we evaluate these variants in terms of performance and speed.

5 Experiments

We train our model on the training set of the COCO dataset [9], which contains
80k training images and 500k instance annotations. For most of our experiments,
results are reported on the first 5k COCO validation images. Mask accuracy is
measured by Intersection over Union (IoU) which is the ratio of the intersection
of the predicted mask and ground truth annotation to their union. A common
method for summarizing object proposal accuracy is using the average recall
(AR) between IoU 0.5 and .95 for a fixed number of proposals. Hosang et al. [38]
show that AR correlates well with object detector performance.

Our results are measured in terms of AR at 10, 100, and 1000 proposals and
averaged across all counts (AUC). As the COCO dataset contains objects in a

10 Pinheiro, Lin, Collobert, Dollár

Fig. 4: SharpMask proposals with highest IoU to the ground truth on selected
COCO images. Missed objects (no matching proposals with IoU > 0.5) are
marked in red. The last row shows a number of failure cases.

wide range of scales, it is also common practice to divide objects into roughly
equally sized sets according to object pixel area a: small (a < 322), medium
(322 ≤ a ≤ 962), and large (a > 962) objects, and report accuracy at each scale.

We use a different subset of the COCO validation set to decide architecture
choices and hyper-parameter selection. We use a learning rate of 1e-3 for training
the refinement stage, which takes about 2 days to train on an Nvidia Tesla K40m
GPU. To mitigate the mismatch of per-patch training with convolutional infer-
ence, we found that training deeper model such as ResNet requires adding extra
image content (32 pixels) surrounding the training patches and using reflective-
padding instead of 0-padding at every convolutional layer. Finally, following [22],
we binarize our continuous mask prediction using a threshold of 0.2.

Learning to Refine Object Segments 11

W P D S kernel F AR ARS ARM ARL time

DeepMask 224 4 8 14 512x14x14 512 36.6 18.2 48.7 50.6 1.32s

W160-P4-D8-VGG 160 4 8 10 1024x10x10 512 35.5 15.1 47.5 53.2 .58s

W160-P4-D39 160 4 39 10 1024x10x10 512 37.0 15.9 50.5 53.9 .58s

W160-P4-D39-F128 160 4 39 10 1024x10x10 128 36.9 15.6 49.9 54.8 .45s

W112-P4-D39 112 4 39 7 1024x7x7 512 30.8 11.2 42.3 47.8 .31s

W112-P3-D21 112 3 21 14 512x14x14 512 36.7 16.7 49.1 53.1 .75s

W112-P3-D21-F128 112 3 21 14 512x14x14 128 36.1 16.3 48.4 52.2 .33s

SharpMask 160 4 39 10 1024x10x10 128 39.3 18.1 52.1 57.1 .75s

Table 1: Model performance (upper bound on AR) for varying input size W,
number of pooling layers P, stride density S, depth D, and features channels
F. See §4.1 and §5.1 for details. Timing is for multiscale inference excluding the
time for score prediction. Total time for DeepMask & SharpMask is 1.59s & .76s.

5.1 Architecture Optimization

We begin by reporting our optimizations of the feedforward model. For our
initial results, we measure AR for densely computed masks (∼104 proposals per
image). This allows us to factor out the effect of objectness score prediction and
focus exclusively on evaluating mask quality. In our experiments, AR across all
proposals is highly correlated (see Figure 6), hence this upper bound on AR is
predictive of performance at more realistic settings (e.g. at AR100).

Trunk Architecture: We begin by investigating effect of the network trunk
parameters described in §4.1 with the goal of optimizing both speed and accu-
racy. Performance of a number of representative models is shown in Table 1.
First, replacing the 224×224 DeepMask VGG-A model with a 160×160 version
is much faster (over 2×). Surprisingly, accuracy loss for this model, W160-P4-D8-
VGG, is only minor, partially due to an improved learning schedule. Upgrading
to a ResNet trunk, W160-P4-D39, restores accuracy and keeps speed identical.
We found that reducing the feature dimension to 128 (-F128) shows almost no
loss, but improves speed. Finally, as input size is a bottleneck, we also tested
a number of W112 models. Nevertheless, overall, W160-P4-D39-F128 gave the
best tradeoff between speed and accuracy.

Head Architecture: In Table 2 we evaluate the performance of the var-
ious network heads in Figure 3 (using standard AR, not upper-bound AR as
in Table 1). Head A is already substantially faster than DeepMask. All heads
achieve similar accuracy with a decreasing inference time as the score branch
shares progressively more computation with the mask. Interestingly, head C is
able to predict both the score and mask from a single compact 512 dimensional
vector. We chose this variant due to its simplicity and speed.

DeepMask-ours: Based on all of these observations, we combine the W160-
P4-D39-F128 trunk with the C head. We refer to the resulting architecture as
DeepMask-ours. DeepMask-ours is over 3× faster than the original DeepMask
(.46s per image versus 1.59s) and also more accurate. Moreover, model parameter
count is reduced from ∼75M to ∼17M. For all SharpMask experiments, we adopt
DeepMask-ours as the base feedforward architecture.

12 Pinheiro, Lin, Collobert, Dollár

AR10 AR100 AR1K AUCS AUCM AUCL AUC mask score total

DeepMask 12.6 24.5 33.1 2.3 26.6 33.6 18.3 1.32s .27s 1.59s

head A 14.0 25.8 33.4 2.2 27.3 36.6 19.3 .45s .06s .51s

head B 14.0 25.4 33.0 2.0 27.0 36.9 19.1 .45s .05s .50s

head C 14.4 25.8 33.1 2.2 27.3 37.4 19.4 .45s .01s .46s

Table 2: All model variants of the head have similar performance. Head C is a
win in terms of both simplicity and speed. See Figure 3 for head definitions.

(a) ki
m = ki

s = k (b) ki
m = ki

s = k
2i−1 (c) detection perf.

Fig. 5: (a-b) Performance and inference time for multiple SharpMask variants.
(c) Fast R-CNN detection performance versus number and type of proposals.

5.2 SharpMask Analysis

We now analyze different parameter settings for our top-down refinement net-
work. As described in §3, each of the four refinement modules Ri in SharpMask
is controlled by two parameters kim and kis, which denote the size of the mask en-
coding M i and skip encoding Si, respectively. These parameters control network
capacity and effect inference speed. We experiment with two different schedules
for these parameters: (a) kim = kis = k and (b) kim = kis = k

2i−1 for each i ≤ 4.

Figure 5(a-b) shows performance for the two schedules for different k both in
terms of AUC and inference time (measured when refining the top 500 proposals
per image, at which point object detection performance saturates, see Figure 5c).
We consistently observe higher performance as we increase the capacity, with no
sign of overfitting. Parameter schedule b, in particular with k = 32, has the best
trade-off between performance and speed, so we chose this as our final model.

We note that we were unable to obtain good results with schedule a for
k ≤ 2, indicating the importance of using sufficiently large k. Also, we observed
that a single 3× 3 convolution encounters learning difficulties when (kis � kif).
Therefore, in all experiments we used a sequence of two 3 × 3 convolutions
(followed by ReLUs) to generate Si from F i, reducing F i to 64 channels first
followed by a further reduction to kis channels.

Finally, we performed two additional ablation studies. First, we removed all
downward convs, set kim = kis = 1, and averaged the output of all layers. Second,
we kept the vertical convs but removed all horizontal convs. These two variants
are related to ‘skip’ and ‘deconv’ networks, respectively. Neither setup showed
meaningful improvement over the baseline feedforward network. In short, we
found that both horizontal and vertical connections were necessary for this task.

Learning to Refine Object Segments 13

Box Proposals Segmentation Proposals

AR10 AR100 AR1K AUC AR10 AR100 AR1K AUCS AUCM AUCL AUC

EdgeBoxes [34] 7.4 17.8 33.8 13.9 — — — — — — —

Geodesic [36] 4.0 18.0 35.9 12.6 2.3 12.3 25.3 1.3 8.6 20.5 8.5

Rigor [37] — 13.3 33.7 10.1 — 9.4 25.3 2.2 6.0 17.8 7.4

SelectiveSearch [33] 5.2 16.3 35.7 12.6 2.5 9.5 23.0 0.6 5.5 21.4 7.4

MCG [35] 10.1 24.6 39.8 18.0 7.7 18.6 29.9 3.1 12.9 32.4 13.7

RPN [7,8] 12.8 29.2 42.6 21.4 — — — — — — —

DeepMask [22] 15.3 31.3 44.6 23.3 12.6 24.5 33.1 2.3 26.6 33.6 18.3

DeepMaskZoom [22] 15.0 32.6 48.2 24.2 12.7 26.1 36.6 6.8 26.3 30.8 19.4

DeepMask-ours 18.7 34.9 46.5 26.2 14.4 25.8 33.1 2.2 27.3 37.4 19.4

SharpMask 19.7 36.4 48.2 27.4 15.6 27.6 35.5 2.5 29.1 40.4 20.9

SharpMaskZoom 20.1 39.4 52.8 29.1 16.1 30.3 39.2 6.9 29.7 38.4 22.4

SharpMaskZoom2 19.2 39.9 55.0 29.2 15.4 30.7 40.8 10.6 27.3 36.0 22.5

Table 3: Results on the COCO validation set on box and segmentation proposals.
AR at different proposals counts is reported and also AUC (AR averaged across
all proposal counts). For segmentation proposals, we also report AUC at multiple
scales. SharpMask has largest for segmentation proposals and large objects.

5.3 Comparison with State of the Art

Table 3 compares the performance of our model, SharpMask, to other existing
methods on the COCO dataset. We compare results both on box and segmenta-
tion proposals (for box proposals we extract tight bounding boxes surrounding
our segmentation masks). SharpMask achieves the state of the art in all metrics
for both speed and accuracy by a large margin. Additionally, because Sharp-
Mask has a smaller input size, it can be applied to an additional one to two
scales (SharpMaskZoom) and achieves a large boost in AR for small objects.

Our feedforward architecture improvements, DeepMask-ours, alone, improve
over the original DeepMask, in particular for bounding box proposals. Not only
is the new baseline more accurate, with our architecture optimization to the
trunk and head of the network (see §4), speed is improved to .46s per image. We
emphasize that DeepMask was the previous state-of-the-art on this task, outper-
forming all bottom-up proposal methods as well as Region Proposal Networks
(RPN) [7] (we obtained improved RPN proposals from the authors of [8]).

We train SharpMask using DeepMask-ours as the feedforward network. As
the two networks have an identical score branch, we can disentangle the per-
formance improvements achieved by our top-down refinement approach. Once
again, we observe a considerable boost in performance on AR due to the top-
down refinement. We note that improvement for segmentation predictions is
bigger than box predictions, which is not surprising, as sharpening masks might
not change the tight box around the objects in many examples. Inference for
SharpMask is .76s per image, over 2× faster than DeepMask; moreover, the
refinement modules require fewer than 3M additional parameters.

In Figures 2 and 9 we show direct comparison between SharpMask and Deep-
Mask and we can see SharpMask generates higher-fidelity masks that more accu-
rately delineate object boundaries. In Figures 4 and 8, we show more qualitative
results. Additional detailed performance plots are shown in Figure 6.

14 Pinheiro, Lin, Collobert, Dollár

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

SelSearch + VGG [6] 19.3 39.3 — — — — — — — — — —

RPN + VGG [7] 21.9 42.7 — — — — — — — — — —

SharpMask + VGG 25.2 43.4 — — — — — — — — — —

ResNet++ [28] 28.2 51.5 27.9 9.3 30.6 45.2 25.7 37.4 38.2 16.8 43.9 57.6

SharpMask+MPN [41] 25.1 45.8 24.8 7.4 29.2 39.1 24.1 36.8 38.7 17.3 46.9 53.9

ResNet++ [28] 37.3 58.9 39.9 18.3 41.9 52.4 32.1 47.7 49.1 27.3 55.6 67.9

SharpMask+MPN [41] 33.5 52.6 36.6 13.9 37.8 47.7 30.2 46.2 48.5 24.1 56.1 66.4

ION [8] 31.0 53.3 31.8 12.3 33.2 44.7 27.9 43.1 45.7 23.8 50.4 62.8

Table 4: Top: COCO bounding box results of various baselines without bells and
whistles, trained on the train set only, and reported on test-dev (results for [6,7]
obtained from original papers). We denote methods using ‘proposal+classifier’
notation for clarity. SharpMask achieves top results, outperforming both RPN
and SelSearch proposals. Middle: Winners of the 2015 COCO segmentation
challenge. Bottom: Winners of the 2015 COCO bounding box challenge.

5.4 Object Detection

In this section, we use SharpMask in the Fast R-CNN pipeline [6] and analyze
the improvements of using our proposals for object detection. In the following
experiments we coupled SharpMask proposals with two classifiers: VGG [26] and
MultiPathNet (MPN) [41], which introduces a number of improvements to the
VGG classifier. In future work we will also test our proposals with ResNets [28].

First, Fig. 5c shows the comparison of bounding box detection results for
SharpMask and SelSearch [33] on the COCO val set with the MPN classifier
applied to both. SharpMask achieves 28 AP, which is 5 AP higher than SelSearch.
Also, performance converges using only ∼500 SharpMask proposals per image.

Next, Table 4 top shows results of various baselines without bells and whis-
tles, trained on the train set only. SharpMask achieves top results with the VGG
classifier, outperforming both RPN [7] and SelSearch [33].

Finally, Table 4 middle/bottom shows results from the 2015 COCO detection
challenges. The performance is reported with model ensembling and the MPN
classifier. The ensemble model achieve 33.5 AP for boxes and 25.1 AP for seg-
ments, and achieved second place in the challenges. Note that for the challenges,
both SharpMask and MPN used the VGG trunk (ResNets were concurrent work,
and won the competitions). We have not re-run our model with ensembling and
additional bells and whistles after integrating ResNets into SharpMask.

6 Conclusion

In this paper, we introduce a novel architecture for object instance segmenta-
tion, based on an augmentation of feedforward networks with top-down refine-
ment modules. Our model achieves a new state of the art for object proposals
generation, both in terms of performance and speed. The proposed refinement
approach is general and could be applied to other pixel-labeling tasks.

Learning to Refine Object Segments 15

10
0

10
1

10
2

10
3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

a
v
e

ra
g

e
 r

e
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

EdgeBoxes

RPN

(a) Bounding box proposals

10
0

10
1

10
2

10
3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

a
v
e

ra
g

e
 r

e
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(b) Segmentation proposals

10
0

10
1

10
2

10
3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

a
v
e

ra
g

e
 r

e
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(c) Small objects (a < 322)

10
0

10
1

10
2

10
3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

a
v
e

ra
g

e
 r

e
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(d) Medium objects

10
0

10
1

10
2

10
3

proposals

0

0.1

0.2

0.3

0.4

0.5

0.6

a
v
e

ra
g

e
 r

e
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(e) Large objects (a > 962)

0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(f) Recall @10 proposals

0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(g) Recall @100 proposals

0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
c
a

ll

SharpMask

SharpMaskZoom

DeepMask

MCG

SelectiveSearch

Rigor

Geodesic

(h) Recall @1000 proposals

Fig. 6: (a-b) Average recall versus number of box and segment proposals on COCO.
(c-e) AR versus number of proposals for different object scales on segment proposals.
(f-h) Recall versus IoU threshold for different number of segment proposals.

28x28

Si(a)	original	

Mi

Mi+1

3x3	
conv

2x	 			
up

28x28

Si

Mi+1

Mi

Mi

3x3	
conv

2x	 			
up

+

(b)	refactored

28x28

Si
3x3	
conv	

Fi

28x28

3x3	
conv

3x3	
conv	

Fi

28x28
28x28

Mi
* *

Fig. 7: (a) Original refinement model. (b) Refactored but equivalent model that leads
to a more efficient implementation. The models are equivalent as concatenating along
depth and convolving along the spatial dimensions can be rewritten as two separate
spatial convolutions followed by addition. The green ‘conv’ boxes denote the corre-
sponding convolutions (note also the placement of the ReLUs). The refactored model
is more efficient as skip features (both Si and Si

∗) are shared by overlapping refine-
ment windows (while M i and M i

∗ are not). Finally, observe that setting ki
m = 1, ∀i,

and removing the top-down convolution would transform our refactored model into a
standard ‘skip’ architecture (however, using ki

m = 1 is not effective in our setting).

16 Pinheiro, Lin, Collobert, Dollár

Fig. 8: More selected qualitative results (see also Figure 4).

Learning to Refine Object Segments 17

(a) DeepMask Output (b) SharpMask Output

Fig. 9: More selected qualitative comparisons (see also Figure 2).

References

1. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. PAMI (2010)

2. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using conv nets. In: ICLR. (2014)

3. Szegedy, C., Reed, S., Erhan, D., Anguelov, D.: Scalable, high-quality object de-
tection. arXiv:1412.1441 (2014)

4. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: ECCV. (2014)

5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR. (2014)

6. Girshick, R.: Fast R-CNN. In: ICCV. (2015)

7. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: NIPS. (2015)

8. Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: Detecting objects
in context with skip pooling and recurrent neural nets. In: CVPR. (2016)

9. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona,
P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common objects in
context. arXiv:1405.0312 (2015)

10. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-
CAL visual object classes (VOC) challenge. IJCV (2010)

11. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. (2009)

12. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-
rization and segmentation. In: CVPR. (2008)

13. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features
for scene labeling. PAMI (2013)

14. Pinheiro, P.O., Collobert, R.: Recurrent conv. neural networks for scene labeling.
In: ICML. (2014)

15. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV. (2015)

18 Pinheiro, Lin, Collobert, Dollár

16. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, B., Su, Z., Du, D., Huang,
C., Torr, P.: Conditional random fields as recurrent neural nets. In: ICCV. (2015)

17. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image
segmentation with deep conv. nets and fully connected CRFs. In: ICLR. (2015)

18. Schwing, A.G., Urtasun, R.: Fully connected deep structured networks.
arXiv:1503.02351 (2015)

19. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: ICCV. (2015)

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

21. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and
segmentation. In: ECCV. (2014)

22. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates.
In: NIPS. (2015)

23. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task
network cascades. In: CVPR. (2016)

24. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object
segmentation and fine-grained localization. In: CVPR. (2015)

25. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: NIPS. (2012)

26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR. (2015)

27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR. (2015)

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. (2016)

29. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR. (2015)

30. Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV. (2015)
31. Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with

unsupervised multi-stage feature learning. In: CVPR. (2013)
32. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows.

PAMI (2012)
33. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object

recog. IJCV (2013)
34. Zitnick, C.L., Dollár, P.: Edge boxes: Locating object proposals from edges. In:

ECCV. (2014)
35. Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale combi-

natorial grouping for image segmentation and object proposal gen. PAMI (2015)
36. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: ECCV. (2014)
37. Humayun, A., Li, F., Rehg, J.M.: RIGOR: Reusing Inference in Graph Cuts for

generating Object Regions. In: CVPR. (2014)
38. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection

proposals? PAMI (2015)
39. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., v.d.

Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: ICCV. (2015)

40. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.
In: CVPR. (2010)

41. Zagoruyko, S., Lerer, A., Lin, T.Y., Pinheiro, P.O., Gross, S., Chintala, S., Dollár,
P.: A multipath network for object detection. In: BMVC. (2016)

