
Recurrent Convolutional Neural Networks for Scene Labeling

Pedro O. Pinheiro1,2 PEDRO.PINHEIRO@IDIAP.CH
Ronan Collobert2 RONAN@COLLOBERT.COM
1Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

2Idiap Research Institute, Martigny, Switzerland

Abstract
The goal of the scene labeling task is to assign a
class label to each pixel in an image. To ensure
a good visual coherence and a high class accu-
racy, it is essential for a model to capture long
range (pixel) label dependencies in images. In
a feed-forward architecture, this can be achieved
simply by considering a sufficiently large input
context patch, around each pixel to be labeled.
We propose an approach that consists of a re-
current convolutional neural network which al-
lows us to consider a large input context while
limiting the capacity of the model. Contrary to
most standard approaches, our method does not
rely on any segmentation technique nor any task-
specific features. The system is trained in an
end-to-end manner over raw pixels, and mod-
els complex spatial dependencies with low infer-
ence cost. As the context size increases with the
built-in recurrence, the system identifies and cor-
rects its own errors. Our approach yields state-of-
the-art performance on both the Stanford Back-
ground Dataset and the SIFT Flow Dataset, while
remaining very fast at test time.

1. Introduction
In the computer vision field, scene labeling is the task of
fully labeling an image pixel-by-pixel with the class of the
object each pixel belongs to. This task is very challeng-
ing, as it implies solving jointly detection, segmentation
and multi-label recognition problems.

The image labeling problem is most commonly addressed
with some kind of local classifier constrained in its pre-
dictions with a graphical model (e.g. conditional random

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

fields, markov random fields), in which global decisions
are made. These approaches usually consist of segment-
ing the image into superpixels or segment regions to as-
sure a visible consistency of the labeling and also to take
into account similarities between neighbor segments, giv-
ing a high level understanding of the overall structure of
the image. Each segment contains a series of input fea-
tures describing it and contextual features describing spa-
tial relation between the label of neighbor segments. These
models are then trained to maximize the likelihood of cor-
rect classification given the features (Verbeek & Triggs,
2008; Gould et al., 2009; Liu et al., 2011; Kumar & Koller,
2010; Socher et al., 2011; Lempitsky et al., 2011; Tighe &
Lazebnik, 2013). The main limitation of scene labeling ap-
proaches based on graphical models is the computational
cost at test time, which limits the model to simple contex-
tual features.

In this work, we consider a feed-forward neural network
approach which can take into account long range label de-
pendencies in the scenes while controlling the capacity of
the network. We achieve state-of-the-art accuracy while
keeping the computational cost low at test time, thanks to
the complete feed-forward design. Our method relies on a
recurrent architecture for convolutional neural networks: a
sequential series of networks sharing the same set of pa-
rameters. Each instance takes as input both an RGB image
and the classification predictions of the previous instance of
the network. The network automatically learns to smooth
its own predicted labels. As a result, the overall network
performance is increased as the number of instances in-
creases.

Compared to graphical model approaches relying on image
segmentation, our system has several advantages: (i) it does
not require any engineered features, since deep learning ar-
chitectures train (hopefully) adequate discriminative filters
in an end-to-end manner, (ii) the prediction phase does not
rely on any label space searching, since it requires only the
forward evaluation of a function.

The paper is organized as follows. Section 2 briefly



Recurrent Convolutional Neural Networks for Scene Labeling

Table 1. Comparison between different methods for full scene labeling. The advantage of our proposed method is the simplicity of
inference, not relying on any task-specific feature extraction nor segmentation method.

METHOD TASK-SPECIFIC FEATURES
(GOULD ET AL., 2009) 17-DIMENSIONAL COLOR AND TEXTURE FEATURES, 9 GRID LOCATIONS AROUND THE

PIXEL AND THE IMAGE ROW, REGION SEGMENTATION.
(MUNOZ ET AL., 2010) GIST, PYRAMID HISTOGRAM OF ORIENTED GRADIENTS, COLOR HISTOGRAM CIELAB,

RELATIVE RELOCATION, HIERARCHICAL REGION REPRESENTATION.
(KUMAR & KOLLER, 2010) COLOR, TEXTURE, SHAPE, PERCENTAGE PIXELS ABOVE HORIZONTAL, REGION-BASED

SEGMENTATION.
(SOCHER ET AL., 2011) SAME AS (GOULD ET AL., 2009).

(LEMPITSKY ET AL., 2011) HISTOGRAM OF VISUAL SIFT, HISTOGRAM OF RGB, HISTOGRAM OF LOCATIONS, “CON-
TOUR SHAPE” DESCRIPTOR.

(TIGHE & LAZEBNIK, 2013) GLOBAL, SHAPE, LOCATION, TEXTURE/SIFT, COLOR, APPEARANCE, MRF.
(FARABET ET AL., 2013) LAPLACIAN PYRAMID, SUPERPIXELS/CRF/TREE SEGMENTATION, DATA AUGMENTATION.
OUR RECURRENT CNN RAW PIXELS

presents related works. Section 3 describes the proposed
strategy. Section 4 presents the results of our experiments
in two standard datasets: the Stanford Background Dataset
(8 classes) and the SIFT Flow Dataset (33 classes) and
compare the performance with other systems. Finally, Sec-
tion 5 provides a discussion followed by a conclusion.

2. Related Work
Recurrent Neural Networks (RNNs) date back from the late
80’s. Already in (Jordan, 1986), the network was fed (in a
time series framework) with the input of the current time
step, plus the output of the previous one. Several vari-
ants have been later introduced, such as in (Elman, 1990).
RNNs have been successfully applied to wide variety of
tasks, including in natural language processing (Stoianov
et al., 1997), speech processing (Robinson, 1994) and im-
age processing (Graves & Schmidhuber, 2008). Our ap-
proach can be viewed as a particular instance of the Jor-
dan’s recurrent network adapted to image processing (we
use a convolutional neural network instead). Providing
feedback from the output into the input allows the network
to model label dependencies, and correct its own previous
predictions.

In a preliminary work, (Grangier et al., 2009) proposed
an innovative approach to scene labeling without the use
of any graphical model. The authors proposed a solution
based on deep convolutional networks relying on a super-
vised greedy learning strategy. These network architectures
when fed with raw pixels are able to capture texture, shape
and contextual information.

(Socher et al., 2011) also considered the use of deep learn-
ing techniques to deal with scene labeling, where off-the-
shelf features of segments are recursively merged to as-
sign a semantic category label. In contrast, our approach
uses the recurrent architecture to parse the scene with a
smoother class annotation.

In (Socher et al., 2012), the authors proposed an approach
which combines convolutional and recursive networks for
classifying RGB-D images. The approach first extracts fea-
tures using a convolutional network which is then fed to a
standard recurrent net. In that respect, our approach is more
end-to-end.

More recently, (Farabet et al., 2013) investigated the use
of convolutional networks to extract features from a mul-
tiscale pyramid of images. This solution yields satisfac-
tory results for the categorization of the pixels, but poor vi-
sual coherence. In order to improve visual coherence, three
different over-segmentation approaches were proposed: (i)
the scene is segmented in superpixels and a single class is
assigned to each of the superpixels, (ii) a conditional ran-
dom field is defined over a set of superpixels to model joint
probabilities between them and correct aberrant pixel clas-
sification (such as “road” pixel surrounded by “sky”), and
(iii) the selection of a subset of tree nodes that maximize
the average “purity” of the class distribution, hence max-
imizing the overall likelihood that each segment will con-
tain a single object. In contrast, our approach is simpler and
completely feed-forward, as it does not require any image
segmentation technique, nor the handling of a multiscale
pyramid of input images.

Similar to (Farabet et al., 2013), (Schulz & Behnke, 2012)
proposed a similar multiscale convolutional architecture. In
their approach, the authors smooth out the predicted labels
with pairwise class filters.

Compared to existing approaches, our method does not rely
on any task-specific feature (see Table 1). Furthermore, our
scene labeling system is able to extract relevant contextual
information from raw pixels.

3. Systems Description
We formally introduce convolutional neural networks
(CNNs) in Section 3.1 and we discuss how to capture long



Recurrent Convolutional Neural Networks for Scene Labeling

5
c
o
n
v

4
×

4

p
o
o
l
2
×

2

2
c
o
n
v

2
×

2

Figure 1. A simple convolutional network. Given an image patch providing a context around a pixel to classify (here blue), a series of
convolutions and pooling operations (filters slid through input planes) are applied (here, five 4× 4 convolutions, followed by one 2× 2
pooling, followed by two 2× 2 convolutions. Each 1× 1 output plane is interpreted as a score for a given class.

range label dependencies with these types of models, while
keeping a tight control over the capacity. Section 3.2 intro-
duces our recurrent network approach for scene labeling.
Finally, in Section 3.3, we show how to infer the full scene
labeling in an efficient manner.

3.1. Convolutional Neural Networks for Scene Labeling

Convolutional neural networks (LeCun, 1989) are a natu-
ral extension of neural networks for treating images. Their
architecture, somewhat inspired by the biological visual
system, possesses two key properties that make them ex-
tremely useful for image applications: spatially shared
weights and spatial pooling. These kind of networks learn
features that are shift-invariant, i.e., filters that are useful
across the entire image (due to the fact that image statistics
are stationary). The pooling layers are responsible for re-
ducing the sensitivity of the output to slight input shift and
distortions. This type of neural network has been shown to
be very efficient in many vision applications, such as object
recognition, segmentation and classification (LeCun et al.,
1990; Jarrett et al., 2009; Turaga et al., 2010; Krizhevsky
et al., 2012).

A typical convolutional network is composed of multiple
stages, as shown in Figure 1. The output of each stage is
made of a set of 2D arrays called feature maps. Each fea-
ture map is the outcome of one convolutional (or pooling)
filter applied over the full image. A non-linear activation
function (such as a hyperbolic tangent) always follows a
pooling layer.

In the context of scene labeling, given an image Ik we are
interested in finding the label of each pixel at location (i, j)
in the image. More precisely, the network is fed with a
squared context patch Ii,j,k surrounding the pixel at loca-
tion (i, j) in the kth image. It can be shown (see Figure 1)
that the output plane size szm of the mth convolution or

pooling layer is computed as:

szm =
szm−1 − kWm

dWm
+ 1 , (1)

where sz0 is the input patch size, kWm is the size of the
convolution (or pooling) kernels in themth layer, and dWm

is the pixel step size used to slide the convolution (or pool-
ing) kernels over the input planes.1 Given a network archi-
tecture and an input image, one can compute the output im-
age size by successively applying (1) on each layer of the
network. During the training phase, the size of the input
patch Ii,j,k is chosen carefully such that the output layers
produces 1× 1 planes, which are then interpreted as scores
for each class of interest.

Adopting the same notation as (Farabet et al., 2013), the
output of a network f with M stages and trainable param-
eters (W,b), for a given input patch Ii,j,k can be formally
written as:

f(Ii,j,k; (W,b)) = WMHM−1 + bM , (2)

with the output of the mth hidden layer computed as:

Hm = tanh(pool(WmHm−1 + bm)) , (3)

for m = {1, ...,M − 1} and denoting H0 = Ii,j,k. bm

is the bias vector of layer m and Wm is the Toeplitz ma-
trix of connection between layer m − 1 and layer m. The
pool(·) function is the max-pooling operator and tanh(·) is
the point-wise hyperbolic tangent function applied at each
point of the feature map.

The network is trained by transforming the scores
fc(Ii,j,k; (W,b)) (for each class of interest c ∈
{1, ..., N}) into conditional probabilities, by applying a
softmax function:

p(c|Ii,j,k; (W,b)) =
efc(Ii,j,k;(W,b))∑

d∈{1,...,N}
efd(Ii,j,k;(W,b))

, (4)

1Most people use dW = 1 for convolutional layers, and
dW = kW for pooling layers.



Recurrent Convolutional Neural Networks for Scene Labeling

and maximizing the likelihood of the training data. More
specifically, the parameters (W,b) of the network f(·) are
learned in an end-to-end supervised way, by minimizing
the negative log-likelihood over the training set:

Lf (W,b) = −
∑

I(i,j,k)

ln p(li,j,k|Ii,j,k; (W,b)) , (5)

where li,j,k is the correct pixel label class at position
(i, j) in image Ik. The minimization is achieved with the
Stochastic Gradient Descent (SGD) algorithm with a fixed
learning rate λ:

W←−W − λ∂Lf

∂W
; b←− b− λ∂Lf

∂b
. (6)

Scene labeling systems leverage long range label depen-
dencies in some way. The most common approach is to
add some kind of graphical model (e.g. a conditional ran-
dom field) over local decisions, such that a certain global
coherence is maintained. In the case of convolutional net-
works, an obvious way to efficiently capture long range de-
pendencies would be to consider large input patches when
labeling a pixel. However, this approach might face gener-
alization issues, as considering larger context often implies
considering larger models (i.e. higher capacity).

In Table 2, we review possible ways to control the capacity
of a convolutional neural network by assuming a large input
context. The easiest way is probably to increase the filter
sizes in pooling layers, reducing the overall number of pa-
rameters in the network. However, performing large pool-
ings decreases the network label output resolution (e.g., if
one performs a 1/8 pooling, the label output plane size will
be about 1/8th of the input image size). As shown later in
Section 3.3 this problem could be overcomed at the cost of
a slow inference process.

Yet another approach would be the use of a multiscale con-
volutional network (Farabet et al., 2013). Large contexts
are integrated into local decisions while making the model
still manageable in terms of parameters/dimensionality.
Label coherence can then be increased by leveraging, for
instance, superpixels.

Another way to consider a large input context size while
controlling the capacity of the model is to make the net-
work recurrent. In this case, the architecture might be very
deep (with many convolution layers), but parameters be-
tween several layers at various depths are shared. We will
now detail our recurrent network approach.

3.2. Recurrent Network Approach

The recurrent architecture (see Figure 2) consists of the
composition of P instances of the “plain” convolutional
network f(·) introduced in Section 3.1. Each instance has

Table 2. Long range pixel label dependencies integration in CNN-
based scene labeling systems. Methods to control capacity and
speed of each architecture is reported.

MEANS CAPACITY CONTROL SPEED

GRAPHICAL
MODEL

– SLOW

MULTISCALE SCALE DOWN INPUT IMAGE FAST

LARGE INPUT
PATCHES

INCREASE POOLING

RECURRENT ARCHITECTURE

SLOW

FAST

identical (shared) trainable parameters (W,b). For clar-
ity, we drop the (W,b) notation in subsequent paragraphs.
The pth instance of the network (1 ≤ p ≤ P ) is fed with
an input “image” Fp of N + 3 features maps

Fp = [f(Fp−1), Ipi,j,k], F1 = [0, Ii,j,k].

which are the output label planes of the previous instance,
and the scaled2 version of the raw RGB squared patch sur-
rounding the pixel at location (i, j) of the training image k.
Note that the first network instance takes 0 label maps as
previous label predictions.

As shown in Figure 2, the size of the input patch Ii,j,k
needed to label one pixel increases with the number of
compositions of f . However, the capacity of the system
remains constant, since the parameters of each network in-
stance are shared.

The system is trained by maximizing the likelihood

L(f) + L(f ◦ f) + ...+ L(f ◦P f) , (7)

where L(f) is a shorthand for the likelihood introduced
in (5) in the case of the plain CNN, and ◦p denotes the
composition operation performed p times. This way, we
ensure that each network instance is trained to output the
correct label at location (i, j). In that respect, the sys-
tem is able to learn to correct its own mistakes (made by
earlier instances). It can also learn label dependencies, as
an instance receives as input the label predictions made by
the previous instance around location (i, j) (see Figure 2).
Note that maximizing (7) is equivalent to randomly alter-
nating (with equal weight) the maximization of each likeli-
hood L(f ◦p f) (for 1 ≤ p ≤ P ). We chose this approach
for simplicity of implementation.

The learning procedure is the same as for a standard CNN
(stochastic gradient descent), where gradients are com-
puted with the backpropagation through time (BPTT) al-
gorithm – the network is first unfolded as shown in Fig-
ure 2 and then the standard backpropagation algorithm is
applied.

2Ipi,j,k is Ii,j,k scaled to the size of f(F p−1).



Recurrent Convolutional Neural Networks for Scene Labeling

f

f

f ◦ f

f

f ◦ f

f ◦ f ◦ f

Figure 2. System considering one (f ), two (f ◦ f ) and three
(f ◦ f ◦ f ) instances of the network. In all three cases, the ar-
chitecture produces labels (1× 1 output planes) corresponding to
the pixel at the center of the input patch. Each network instance
is fed with the previous label predictions, as well as a RGB patch
surrounding the pixel of interest. For space constraints, we do not
show the label maps of the first instances, as they are zero maps.
Adding network instances increases the context patch size seen by
the architecture (both RGB pixels and previous predicted labels).

3.3. Scene Inference

Given a test image Ik, for each pixel at location (i, j) the
network predicts a label as:

l̂i,j,k = argmax
c∈classes

p(c|Ii,j,k; (W,b)) , (8)

considering the context patch Ii,j,k. Note that this im-
plies padding the input image when inferring label of pix-
els close to the image border. In practice, simply extracting
patches Ii,j,k and then feeding them through the network
for all pixels of a test image is computationally very inef-
ficient. Instead, it is better to feed the full test image (also
properly padded) to the convolutional network: applying
one convolution to a large image is much faster than ap-

plying the same convolution many times to small patches.
When fed with the full input image, the network will output
a plane of label scores. However, following (1), the plane
size is smaller than the input image size: this is mainly due
to pooling layers, but also due to border effects when apply-
ing the convolution. For example, if the network includes
two 2× 2 pooling layers, only 1 every 4 pixels of the input
image will be labeled. Most convolutional network users
(see for e.g. Farabet et al., 2013) upscale the label plane to
the input image size.

In fact, it is possible to compute efficiently the label plane
with a fine resolution by feeding to the network several ver-
sions of the input image, shifted on the X and Y axis. Fig-
ure 3 shows an example for a network which would have
only one 2 × 2 pooling layer, and one output plane: low
resolution label planes (coming out of the network for the
input image shifted by (0, 0), (0, 1), (1, 0) and (1, 1) pix-
els) are “merged” to form the high resolution label plane.
Merging is a simple copy operation which matches a pixel
in a low resolution label plane with the location of the cor-
responding original pixel to label in the (high resolution)
input plane. The number of forwards is proportional to
the number of pooling layers. However, this would be still
much faster than forwarding patches at each location of the
test image. We will see in Section 4.3 that having a finer la-
bel resolution can increase the classification performance.

4. Experiments
We tested our proposed method on two different fully-
labeled datasets: the Stanford Background (Gould et al.,
2009) and the SIFT Flow Dataset (Liu et al., 2011). The
Stanford dataset has 715 images from rural and urban
scenes composed of 8 classes. The scenes have approxi-
mately 320 × 240 pixels. As in (Gould et al., 2009), we
performed a 5-fold cross-validation with the dataset ran-
domly split into 572 training images and 143 test images in
each fold. The SIFT Flow is a larger dataset composed of
2688 images of 256 × 256 pixels and 33 semantic labels.
All the algorithms and experiments were implemented us-
ing Torch7 (Collobert et al., 2012).

Each image of the training set was properly padded and
normalized such that they have zero mean and unit vari-
ance. All networks were trained by sampling patches sur-
rounding a randomly chosen pixel from a randomly chosen
image from the training set. Contrary to (Farabet et al.,
2013) (i) we did not consider addition of any distortion on
the images3, (ii) we did not use contrastive normalization
and (iii) we did not sample training patches according to
balanced class frequencies.

3Which is known to improve the generalization accuracy by
few extra percents.



Recurrent Convolutional Neural Networks for Scene Labeling

0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0
0
0
0
0

0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0 0 0 0 0 0
0
0
0
0
0

0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

7 9
17 19

6 8 10
16 18 20

2 4
12 14
22 241 3 5

11 13 15
21 23 25

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

(0,0)

(1,0)

(0,1)

(1,1
)

f(·; (W,b))

f(·; (W,b))

f(·; (W,b))

f(·; (W,b))

merge

Figure 3. Convolutional neural networks output downscaled label planes (compared to the input image) due to pooling layers. To
alleviate this problem, one can feed several shifted version of the input image (here represented by pixels 1...25) in the X and Y axis.
In this example the network is assumed to have a single 2 × 2 pooling layer. Downscaled predicted label planes (here in red) are then
merged to get back the full resolution label plane in an efficient manner. Note that pixels represented by 0 are adequate padding.

Table 3. Pixel and averaged per class accuracy and computing
time of other methods and our proposed approaches on the Stan-
ford Background Dataset. For recurrent networks, ◦n indicates
the number of compositions.

METHOD
A

PIXEL/CLASS
ACCURACY (%)

COMPUTING
TIME (S)

(GOULD ET AL., 2009) 76.4 / - 10 TO 600
(TIGHE & LAZEBNIK, 2010) 77.5 / - 10 TO 300
(MUNOZ ET AL., 2010)‡ 76.9 / 66.2 12
(KUMAR & KOLLER, 2010) 79.4 / - < 600
(SOCHER ET AL., 2011) 78.1 / - ?
(LEMPITSKY ET AL., 2011) 81.9 / 72.4 > 60
(FARABET ET AL., 2013)? 78.8 / 72.4 0.6
(FARABET ET AL., 2013)† 81.4 / 76.0 60.5
PLAIN CNN1 79.4 / 69.5 15
CNN2 (◦1) 67.9 / 58.0 0.2
RCNN2 (◦2) 79.5 / 69.5 2.6
CNN3 (◦1) 15.3 / 14.7 0.06
RCNN3 (◦2) 76.2 / 67.2 1.1
RCNN3 1/2 RESOLUTION (◦3) 79.8 / 69.3 2.15
RCNN3 1/1 RESOLUTION (◦3) 80.2 / 69.9 10.7

? Multiscale CNN without segmentation
† Multiscale CNN + CRF
‡ Unpublished improved results have been recently reported by the authors

We considered two different accuracy measures to compare
the performance of the proposed approach with other ap-
proaches. The first one is the accuracy per pixel of test im-
ages. This measure is simply the ratio of correct classified
pixels of all images in the test set. However, in scene label-
ing (especially in datasets with large number of classes),
classes which are much more frequent than others (e.g. the
class “sky” is much more frequent than “moon”) have more
impact on this measure. Recent papers also consider the
averaged per class accuracy on the test set (all classes have
the same weight in the measure). Note that as mentioned
above, we did not train with balanced class frequencies,
which would have optimized this second measure.

Table 4. Pixel and averaged per class accuracy of other methods
and our proposed approaches on the SIFT Flow Dataset. For re-
current networks, ◦n indicates the number of compositions.

METHOD
A

PIXEL/CLASS
ACCURACY (%)

(LIU ET AL., 2011) 76.67 / -
(TIGHE & LAZEBNIK, 2013) 77.0 / 30.1
(FARABET ET AL., 2013) 78.5 / 29.6
PLAIN CNN1 76.5 / 30.0
CNN2 (◦1) 51.8 / 17.4
RCNN2 (◦2) 76.2 / 29.2
RCNN3 (◦2) 65.5 / 20.8
RCNN3 (◦3) 77.7 / 29.8

We consider three CNNs architectures. A “plain CNN1”
was designed to take large input patches. CNN2 and CNN3

architectures were designed such that their recurrent ver-
sions (with respectively two or three compositions) would
still lead to a reasonable input patch size. We denote rCNNi

for the recurrent version of the regular convolutional net-
work CNNi. For rCNN3, we show results considering
both half resolution and full-resolution inference (see Sec-
tion 3.3), in which we are able to achieve better results (at
the cost of a higher computing time). Table 3 compares
the performance of our architectures with related works on
the Stanford Background Dataset and Table 4 compares the
performance on the SIFT Flow Dataset. Note that the in-
ference time in the second dataset does not change, since
we exclude the need of any segmentation method. In the
following, we provide additional technical details for each
architecture used.

4.1. Plain Network

CNN1 was trained with 133× 133 input patches. The net-
work was composed of a 6× 6 convolution with nhu1 out-



Recurrent Convolutional Neural Networks for Scene Labeling

put planes, followed by a 8 × 8 pooling layer, a tanh(·)
non-linearity, another 3× 3 convolutional layer with nhu2
output planes, a 2×2 pooling layer, a tanh(·) non-linearity,
and a final 7 × 7 convolution to produce label scores. The
hidden units were chosen to be nhu1 = 25 and nhu2 = 50
for the Stanford dataset, and nhu1 = 50 and nhu2 = 50
for the SIFT Flow dataset.

4.2. Recurrent Architectures

We consider two different recurrent convolutional network
architectures.

The first architecture, rCNN2, is composed of two consec-
utive instances of the convolutional network CNN2 with
shared parameters (system in the center of Figure 2). CNN2

is composed of a 8 × 8 convolution with 25 output planes,
followed by a 2 × 2 pooling layer, a tanh(·) non-linearity,
another 8 × 8 convolutional layer with 50 output planes,
a 2 × 2 pooling layer, a tanh(·) non-linearity, and a final
1× 1 convolution to produce N label scores. As described
in Section 3.2, rCNN2 is trained by maximizing the likeli-
hood given in (7). As shown in Figure 2, the input context
patch size depends directly on the number of network in-
stances in the recurrent architecture. In the case of rCNN2,
the input patch size is 25 × 25 when considering one in-
stance (f ) and 121 × 121 when considering two network
instances (f ◦ f ).

The second recurrent convolutional neural network rCNN3

is composed of a maximum of three instances of the convo-
lutional network CNN3 with shared parameters. Each in-
stance of CNN3 is composed of a 8×8 convolution with 25
output planes, followed by a 2× 2 pooling layer, a tanh(·)
non-linearity, another 8×8 convolution with 50 planes and
a final 1× 1 convolution which outputs the N label planes.
Following (7), we aim at maximizing

L(f) + L(f ◦ f) + L(f ◦ f ◦ f) . (9)

This appeared too slow to train on a single computer in the
case of rCNN3. Instead, we initialized the system by first
starting training with two network instances (maximizing
L(f ◦ f)). We then switched to the training of the full cost
function (9). The input patch size is 23 × 23, 67 × 67 and
155× 155 when considering one, two or three instances of
the network (f , f ◦ f and f ◦ f ◦ f ), respectively.

Figure 4 illustrates inference of the recurrent network with
one and two instances. It can be seen that the network
learns itself how to correct its own label prediction.

In all cases, the learning rate in (6) was equal to 10−4. All
hyper-parameters were tuned with a 10% held-out valida-
tion data.

4.3. Compute Time and Scene Inference

In Table 5, we analyze the trade off between computing
time and test accuracy by running several experiments with
different output resolutions for recurrent network rCNN3

(see Section 3.3 and Figure 3). Labeling about 1/4th of the
pixels seems to be enough to lead to near state-of-the-art
performance, while keeping a very fast inference time.

Table 5. Computing time and performance in pixel accuracy for
the recurrent convolutional network rCNN3 with different label
resolution on the Stanford dataset. Our algorithms were run on a
4-core Intel i7.

OUTPUT
RESOLUTION

COMPUTING TIME
PER IMAGE

PIXEL
ACCURACY

1/8 0.20S 78.4%
1/4 0.70S 79.3%
1/2 2.15S 79.8%
1/1 10.68S 80.2%

5. Conclusion
This paper presented a novel feed-forward approach for full
scene labeling based on supervised deep learning strategies
which model in a rather simple way non-local class depen-
dencies in a scene from raw pixels. We demonstrated that
the problem of scene labeling can be effectively achieved
without the need of any expensive graphical model or seg-
mentation technique to ensure labeling. The scene labeling
is inferred simply by forward evaluation of a function ap-
plied to a RGB image.

In terms of accuracy, our system achieves state-of-the-
art results on both Stanford Background and SIFT Flow
datasets, while keeping a fast inference time. Future work
includes investigation of unsupervised or semi-supervised
pre-training of the models, as well as application to larger
datasets such as the Barcelona dataset.

Acknowledgments
The authors thank the reviewers for their useful feedback
and comments. This work was supported by the Swiss
NSF through the Swiss National Center of Competence in
Research (NCCR) on Interactive Multimodal Information
Management (www.im2.ch).

References
Collobert, R., Kavukcuoglu, K., and Farabet, C. Imple-

menting neural networks efficiently. In Neural Net-
works: Tricks of the Trade. Springer, 2012.

Elman, J. L. Finding structure in time. In Cognitive Sci-
ences, 1990.



Recurrent Convolutional Neural Networks for Scene Labeling

Figure 4. Inference results of our architectures. The two first examples (rows) are from the Stanford Background Dataset and the two
last ones are from the SIFT Flow Dataset. First column is the input image. The second column represents the output of the “plain
CNN1” network, the third column illustrates results of rCNN2 with one instance and the last column the result with the composition of
two instances: most mistakes of first instance are corrected on the second one. Best viewed in color.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. Learn-
ing hierarchical features for scene labeling. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2013.

Gould, S., Fulton, R., and Koller, D. Decomposing a scene
into geometric and semantically consistent regions. In
International Conference on Computer Vision (ICCV),
2009.

Grangier, D., Bottou, L., and Collobert, R. Deep convo-
lutional networks for scene parsing. In International
Conference on Machine Learning (ICML) Deep Learn-
ing Workshop, 2009.

Graves, A. and Schmidhuber, J. Offline handwriting recog-
nition with multidimensional recurrent neural networks.
In Advances in Neural Information Processing Systems
(NIPS), 2008.



Recurrent Convolutional Neural Networks for Scene Labeling

Jarrett, K., Kavukcuoglu, K., Ranzato, MA., and LeCun,
Y. What is the best multi-stage architecture for object
recognition? In Proceedings International Conference
on Computer Vision (ICCV’09), 2009.

Jordan, M. I. Attractor dynamics and parallelism in a con-
nectionist sequential machine. In Proceedings of the
Eighth Annual Conference of the Cognitive Science So-
ciety, 1986.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
(NIPS), 2012.

Kumar, M.P. and Koller, D. Efficiently selecting regions
for scene understanding. In Computer Vision and Pattern
Recognition (CVPR), 2010.

LeCun, Y. Generalization and network design strategies. In
Connectionism in Perspective. 1989.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D. Hand-
written digit recognition with a back-propagation net-
work. In Advances in Neural Information Processing
Systems (NIPS), 1990.

Lempitsky, V., Vedaldi, A., and Zisserman, A. A pylon
model for semantic segmentation. In Advances in Neural
Information Processing Systems (NIPS), 2011.

Liu, C., Yuen, J., and Torralba, A. Nonparametric scene
parsing via label transfer. IEEE Trans. Pattern Anal.
Mach. Intell., 2011.

Munoz, D., Bagnell, J., and Hebert, M. Stacked hierarchi-
cal labeling. In Proceedings European Conference on
Computer Vision (ECCV), 2010.

Robinson, T. An application of recurrent nets to phone
probability estimation. IEEE Transactions on Neural
Networks, 5:298–305, 1994.

Schulz, H. and Behnke, S. Learning object-class segmenta-
tion with convolutional neural networks. In Proceedings
of the European Symposium on Artificial Neural Net-
works (ESANN), 2012.

Socher, R., Lin, C., Ng, A., and Manning, C. Parsing natu-
ral scenes and natural language with recursive neural net-
works. In International Conference on Machine Learn-
ing (ICML), 2011.

Socher, R., Huval, B., Bhat, B., Manning, C. D., and Ng,
A. Y. Convolutional-recursive deep learning for 3d ob-
ject classification. In Advances in Neural Information
Processing Systems (NIPS). 2012.

Stoianov, I., Nerbonne, J., and Bouma, H. Modelling
the phonotactic structure of natural language words with
simple recurrent networks. In Computational Linguistics
in the Netherlands, 1997.

Tighe, J. and Lazebnik, S. Superparsing: scalable non-
parametric image parsing with superpixels. In European
conference on Computer vision (ECCV), 2010.

Tighe, J. and Lazebnik, S. Superparsing - scalable non-
parametric image parsing withsuperpixels. International
Journal of Computer Vision, 2013.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter,
M., Briggman, K., Denk, W., and Seung, H. S. Convolu-
tional networks can learn to generate affinity graphs for
image segmentation. Neural Computation, 2010.

Verbeek, J. and Triggs, B. Scene segmentation with crfs
learned from partially labeled images. In Advances in
Neural Information Processing Systems (NIPS), 2008.


