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Abstract

We present a general framework and learn-
ing algorithm for the task of concept label-
ing : each word in a given sentence has to be
tagged with the unique physical entity (e.g.
person, object or location) or abstract con-
cept it refers to. Our method allows both
world knowledge and linguistic information
to be used during learning and prediction.
We show experimentally that we can learn
to use world knowledge to resolve ambigui-
ties in language, such as word senses or ref-
erence resolution, without the use of hand-
crafted rules or features.

1 Introduction

Much of the focus of the natural language processing
community lies in solving syntactic or semantic tasks
with the aid of sophisticated machine learning algo-
rithms and the encoding of linguistic prior knowledge.
For example, a typical way of encoding prior knowl-
edge is to hand-code syntax-based input features or
rules for a given task. However, one of the most impor-
tant features of natural language is that its real-world
use (as a tool for humans) is to communicate some-
thing about our physical reality or metaphysical con-
siderations of that reality. This is strong prior knowl-
edge that is simply ignored in most current systems.

For example, in current parsing systems there is no
allowance for the ability to disambiguate a sentence
given knowledge of the physical reality of the world.
So, if one happened to know that Bill owned a tele-
scope while John did not, then this should affect pars-
ing decisions given the sentence “John saw Bill in the
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park with his telescope.” Likewise, in terms of refer-
ence resolution one could disambiguate the sentence
“He passed the exam.” if one happens to know that
Bill is taking an exam and John is not. Further, one
can improve disambiguation of the word bank in “John
went to the bank” if you happen to know whether John
is out for a walk in the countryside or in the city. Many
human disambiguation decisions are in fact based on
whether the current sentence agrees well with one’s
current world model. Such a model is dynamic as the
current state of the world (e.g. the existing entities
and their relations) changes over time. Note that this
model that we use to disambiguate can be built from
our perception of the world (e.g. visual perception)
and not necessarily from language at all.

Concept labeling In this paper, we propose a gen-
eral framework for learning to use world knowledge
called concept labeling. The “knowledge” we consider
can be viewed as a database of physical entities exist-
ing in the world (e.g. people, locations or objects) as
well as abstract concepts, and relations between them,
e.g. the location of one entity is expressed in terms of
its relation with another entity. Our task consists of
labeling each word of a sentence with its corresponding
concept from the database.

The solution to this task does not provide a full seman-
tic interpretation of a sentence, but we believe it is a
important part of that goal. Indeed, in many cases,
the meaning of a sentence can only be uncovered af-
ter knowing exactly which concepts, e.g. which unique
objects in the world, are involved. If one wants to in-
terpret “He passed the exam”, one has to infer not only
that “He” refers to a “John”, and “exam” to a school
test, but also exactly which “John” and which test it
was. In that sense, concept labeling is more general
than the traditional tasks like word-sense disambigua-
tion, co-reference resolution, and named-entity recog-
nition, and can be seen as a unification of them.

Learning algorithm We then go on to propose a
tractable algorithm for this task that seamlessly learns
to integrate both world knowledge and linguistic con-
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tent of a sentence without the use of any hand-crafted
rules or features. This is a challenging goal and stan-
dard algorithms do not achieve it. Our algorithm is
first evaluated on human generated sentences from
RoboCup commentaries (Chen & Mooney, 2008). Yet
this dataset does not involve world knowledge. Hence
we present experiments using a novel simulation pro-
cedure to generate natural language and concept label
pairs: the simulation generates an evolving world, to-
gether with sentences describing the successive evolu-
tions. These experiments demonstrate that our algo-
rithm can learn to use world knowledge for word dis-
ambiguation and reference resolution when standard
methods cannot.

Although clearly only a first step towards the goal of
language understanding, which is AI complete, we feel
our work is an original way of tackling an important
and central problem. In a nut-shell, we show one can
learn to resolve ambiguities using world knowledge,
which is a prerequisite for further semantic analysis,
e.g. for communication.

Previous work Our work concerns learning the
connection between two symbolic systems: the one of
natural language and the one, non-linguistic, of the
concepts present in a database. Making such an as-
sociation has been studied as the symbol grounding
problem (Harnad, 1990) in the literature. More specif-
ically, the problem of connecting natural language to
another symbolic system is called grounded language
processing (Roy & Reiter, 2005). Some of such earliest
works that used world knowledge to improve linguistic
processing involved hand-coded parsing and no learn-
ing at all, perhaps the most famous being situated in
blocks world (Winograd et al., 1972).

More recent works on grounded language acquisition
have focused on learning to match language with some
other representations. Grounding text with a visual
representation also in a blocks-type world was tack-
led in (Feldman et al., 1996). Other works use visual
grounding (Siskind, 1994; Yu & Ballard, 2004; Barnard
& Johnson, 2005), or a representation of the intended
meaning in some formal language (Fleischman & Roy,
2005; Kate & Mooney, 2007; Wong & Mooney, 2007;
Chen & Mooney, 2008; Branavan et al., 2009; Zettle-
moyer & Collins, 2009; Liang et al., 2009). Example
applications of such grounding include using the mul-
timodal input to improve clustering (with respect to
unimodal input) e.g. (Siskind, 1994), word-sense dis-
ambiguation (Barnard & Johnson, 2005; Fleischman
& Roy, 2005) or semantic parsing (Kate & Mooney,
2007; Chen & Mooney, 2008; Branavan et al., 2009;
Zettlemoyer & Collins, 2009).

Work using linguistic context, i.e. previously ut-

tered sentences, also ranges from dialogue systems,
e.g. (Allen, 1995), to co-reference resolution (Soon
et al., 2001). We do not consider this type of contex-
tual knowledge in this paper, however our framework
is extensible to those settings.

2 Concept Labeling

We consider the following setup. One must learn a
mapping from a natural language sentence x ∈ X to
its labeling in terms of concepts y ∈ Y, where y is an
ordered set of concepts, one concept for each word in
the sentence, i.e. y = (c1, . . . , c|x|) where ci ∈ C, the
set of concepts. These concepts belong to a current
model of the world which expresses one’s knowledge of
it. We term it a “universe”. The framework of concept
labeling is illustrated in Figure 1.

World knowledge We define the universe as a set
of concepts and their relations to other concepts: U =
(C,R1, . . . ,Rn) where n is the number of types of rela-
tion and Ri ⊂ C2, ∀i = 1, . . . , n. Much work has been
done on knowledge representation itself (see (Russell
et al., 1995) for an introduction). This is not the focus
of this paper and so we made this simplest possible
choice. To make things concrete we now describe the
template database we use in this paper.

Each concept c of the database is identified using a
unique string name(c). Each physical object or action
(verb) of the universe has its own referent. For exam-
ple, two different cartons of milk will be referred to
as <milk1> and <milk2> Here, we use understand-
able strings as identifiers for clarity but they have no
meaning for the system.

In our experiments we will consider two types of rela-
tion1, which give our learner world knowledge about
geographical properties of entities in its world, that
can be expressed with the following formula:

• location(c) = c′ with c, c′ ∈ C: the location of
the concept c is the concept c′.

• containedby(c) = c′ with c, c′ ∈ C: the concept c′

physically holds the concept c.

Strong and weak supervision Usually in se-
quence labeling, learning is carried out using fully
supervised data composed of input sequences explic-
itly aligned with label annotations. To learn the task
of concept labeling, this would result in training ex-
amples composed by triples (x, y, u) ∈ X × Y × U as

1Of course this list is easily expanded upon. Here, we
give two simple properties of physical objects.
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He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

<Gina> <Mark>

locatio
n

<John> <cook> <rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location

Figure 1: Concept labeling. The universe u contains

all the concepts known to exist, as well as their relations.

The goal is to predict the sequence y of the concepts that

each word in the sentence x refers to, including the empty

concept “-”, using x and u.

Figure 2: Weak training triple. In the weakly su-

pervised setting the supervision bag b consists of the set of

concepts related to the sentence x. The alignment between

words and concepts is not given and must be discovered.

shown in Figure 1. In order to construct such a dataset
it seems likely that humans would have to annotate
data for our learner in much the same way as linguists
have built labeled datasets for parsing, semantic role
labeling, part-of-speech and reference resolution.

A more difficult, but more realistic, learning prob-
lem would be for our model to learn from weakly su-
pervised data of just observing language given the
evolving world-state context. Hence, one instead con-
siders weakly labeled training triples (x, b, u): for a
given input sentence x, the supervision b is now a
“bag” of concepts (there is no information about order-
ing/alignment of elements of b to x). This is similar to
the setting of (Kate & Mooney, 2007) except we learn
to use world knowledge. An illustrating example of a
training triple (x, b, u) is given on Figure 2.

To conduct experiments with such a situated learner

an immediately realisable setting is within a computer
game environment, e.g. multiplayer Internet games.
For such games, the knowledge base of concepts is al-
ready given by the underlying game model defined by
the game designers (e.g. the locations, actors, etc.
as well as concepts such as an object being located or
worn). Then all that remains is to convert this into our
universe formalism. Real-world settings are also possi-
ble but require technologies for building world knowl-
edge beyond the scope of this work.

Why is this task challenging? The main difficulty
of concept labeling arises with ambiguous words that
can be mislabeled. A concept labeling algorithm must
be able to use the available information to solve the
ambiguities. In our work, we consider the following
kinds of ambiguities, which of course, can be mixed
within a sentence:

• Location-based ambiguities that can be re-
solved by the locations of the concepts. Exam-
ples: “John picked it up” or “He dropped his coat
in the hall”. Information about the location of
John, co-located objects and so on can improve
the disambiguation.

• Containedby-based ambiguities that can be re-
solved through knowledge of containedby relations
as in “the milk in the closet” or “the one in the
closet” where there are several cartons of milk
(e.g. one in the fridge and one in the closet).

• Category-based: A concept is identified in a
sentence by an ambiguous term and the disam-
biguation can be resolved by using semantic cat-
egorization. Example: “He cooks the rice in the
kitchen” where two persons, a male and a female,
are in the kitchen.

The first two kinds of ambiguities require the algo-
rithm to be able to learn rules based on its available
universe knowledge. The last kind can be solved using
linguistic information such as word gender or category.
However, the necessary rules or linguistic information
are not given as input features and again the algorithm
has to learn to infer them. This is one of the main goals
of our work. Figure 3 describes the necessary steps for
an algorithm to perform such disambiguation. Even
for a simple sentence the procedure is rather complex
and somehow requires “reasoning”.

3 Learning Algorithm

Inference A straight-forward approach to learn a
function that maps from sentence x to concept se-
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He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

Step 0:

<Gina>

<Mark>

locatio
n

He cooks the rice

? ? ? ?

x:

y:

u:

Step 4:

(2)

(1)

<kitchen>

<garden>

<John>

<rice><cook>

<Gina>

<Mark>

He cooks the rice

? ? ? ?

x:

y:

u:

Step 5:

<kitchen>

<garden>

<John> <rice><cook>

<Gina>

<Mark>

Figure 3: Inference scheme. Step 0 defines the task: recover the concepts y given a sentence x and the current

state of the universe u. For simplicity only relevant concepts and location relations are depicted in this figure. First,

non-ambiguous words are labeled in steps 1-3 (not shown). In step 4, to tag the ambiguous pronoun “he”, the system has

to combine two pieces of information: (1) <rice> and the unknown concept might share the same location, <kitchen>,

and, (2) “he” only refers to a subset of concepts in u (the males).

quence y given u is to consider a model of the form:

y = f(x, u) = argmaxy′ g(x, y′, u), (1)

where g(·) returns a scalar that should be a large value
when the output concepts y′ are consistent with both
the sentence x and the current state of the universe
u. To find such a function, one can choose a family of
functions g(·) and pick the member which minimizes
the error: L =

∑
{(x,b,u)} `(b, f(x, u)) where the loss

function ` is 1 if b and the set containing the elements
of f(x, u) differ, and 0 otherwise. However, one practi-
cal issue of this choice of algorithm is that the exhaus-
tive search over all possible concepts in Equation (1)
could be rather slow.

Algorithm 1 Order-free inference
Require: (x, u)
1: ŷ0

j = ⊥ , j = 1, . . . , |x|, where ⊥ means unlabeled.
2: while t < |x| do
3: t = t + 1.
4: St =

S
j: ŷt−1

j =⊥

˘
y′
˛̨
y′j ∈ C and ∀i 6= j, y′i = ŷt−1

i

¯
.

5: ŷt = argmaxy′∈St
g(x, y′, u).

6: end while
Return: ŷ|x|.

The intuition in Figure 3 rather suggests us to use
a greedy “order-free” inference process (Shen et al.,
2007): we label the word we are most confident in
(possibly the least ambiguous, which can be in any
position in the sentence) and then use the known fea-
tures of that concept to help label the remaining ones.

This is detailed in Algorithm 1. At each step, the set of
output candidates St does not depend on the position
in the sentence, one can label any thus far unlabeled
word with a concept (line 4). The confidence-based

choice is carried out with the function g(·) (line 5),
which is learnt to optimize the loss of interest L. Note
that Algorithm 1 is quite efficient as it requires only
|C| × |x|2 computations of g(·), whereas solving (1)
requires |C||x| (and |C| � |x|).

Family of functions Following Bengio et al. (2003)
and Collobert & Weston (2008), we chose a neural-
network architecture for g(·) which is capable of learn-
ing to encode some of the linguistic information re-
quired to perform disambiguation (such as, “he” only
refers to males, in the example of Figure 3). The ac-
tual form of the function g(·) is:

g(x, y, u) =
|x|∑
i=1

gi(x, y−i, u)>h(yi, u) (2)

where gi(·) ∈ RN is a “sliding window” representation
of width w centered on the ith position in the sen-
tence, y−i is the same as y except that the ith position
(y−i)i = ⊥ , and h(·) ∈ RN is a linear mapping into
the same space as g(·). We constrain ||h(⊥ , u)|| = 0
so that as yet unlabeled outputs do not play a role. A
less mathematical explanation of this model is as fol-
lows: gi(·) takes a window of the input sentence and
previously labeled concepts centered around the ith

word and embeds them into an N dimensional space.
h(yi, u) embeds the ith concept into the same space,
where both mappings are learnt. The magnitude of
their dot product in this space indicates how confi-
dent the model is that the ith word, given its context,
should be labeled with concept yi. This representa-
tion is also useful from a computational point of view
because gi(·) and h(·) can be cached and reused in
Algorithm 1, making inference fast.

The functions gi(·) and h(·) are simple two-layer lin-
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ear neural networks in a similar spirit to (Collobert &
Weston, 2008). The first layer of both are so-called
“Lookup Tables”. We represent each word m in the
dictionary with a unique vector D(m) ∈ Rd and every
unique concept name name(c) also with a unique vec-
tor C(name(c)) ∈ Rd, where we learn these mappings.
No hand-crafted syntactic features are used.

To represent a concept and its relations we do some-
thing slightly more complicated. A particular concept
c (e.g. an object in a particular location, or being held
by a particular person) is expressed as the concatena-
tion of the three unique concept name vectors:

C̄(c) = (C(name(c)), C(name(location(c))), (3)

C(name(containedby(c)))).

In this way, the learning algorithm can take these dy-
namic relations from the universe into account, if they
are relevant for the labeling task. Hence, the first layer
of the network gi(·) outputs2:

g1
i (x, y−i, u) =

“
D(x

i−w−1
2

), . . . , D(x
i+ w−1

2
),

C̄((y−i)i−w−1
2

), . . . , C̄((y−i)i+ w−1
2

”
.

The second layer is a linear layer that maps from this
4wd dimensional vector to the N dimensional output,
i.e. overall we have the function (with parameters
Wg ∈ <4wd×N and bg ∈ <N ) :

gi(x, y−i, u) = Wg g1
i (x, y−i, u) + bg.

Likewise, h(yi, u) has a first layer which outputs C̄(yi),
followed by a linear layer mapping from this 3d dimen-
sional vector to N , i.e. (with parameters Wh ∈ <3d×N

and bh ∈ <N ):

h(yi, u) = Wh C̄(yi) + bh.

Overall, we chose a linear architecture that avoids
strongly engineered features, assumes little prior
knowledge about the mapping task in hand, but is
powerful enough to capture many kinds of relations
between words and concepts. We justify our algorith-
mic choices by comparing with alternative choices in
the experimental section 4.

It is important that algorithms for this task both cap-
ture the complexity of the task, and remain scalable.
Our algorithm should scale to a large number of con-
cepts, indeed it was designed with that in mind: infer-
ence scales linearly with the number of concepts. In
the model described so far, however, an increase in the
number of relations increase the number of parameters
to learn in the network which might not be scalable.

2Padding must be used when indices are out of bounds.

This can be remedied by mapping a large set of re-
lations to a low dimensional subspace first using one
more layer in the network. However, in this paper for
simplicity we do not describe this extension further.

LaSO-type training We train our system online
by employing a variation on the LaSO (Learning As
Search Optimization) training process (Daumé III &
Marcu, 2005). LaSO’s central idea is to mix training
and inference in a single learning for search strategy.
During training, we thus perform inference on each
given triple (x, b, u) using Algorithm 1, with the fol-
lowing updates in order to learn the model parameters.

Strong supervision We define the predicted label-
ing ŷt at inference step t (see Algorithm 1, step 5) as y-
good, compared to the true labeling y, if either ŷt

i = yi

or ŷt
i = ⊥ for all i. As soon as ŷt is no longer y-good

we make an “early update” to the model, similar to
(Collins & Roark, 2004). The update is a stochastic
gradient step so that each possible y-good state one
can choose from ŷt−1 is ranked higher than the cur-
rent incorrect state, i.e. we would like to satisfy the
ranking constraints:

∀i : ŷt−1
i = ⊥ , g(x, ŷt−1

+(i,yi)
, u) > g(x, ŷt, u),

where ŷt−1
(i,+yi)

denotes a vector which is the same as
ŷt−1 except its ith element is set to yi. Note that
if all such constraints are satisfied then all training
examples must be correctly classified.

Weak supervision For the weakly supervised case
we are given only a supervision bag b. In that case,
at each round we define the predicted labeling ŷt as
y-good if either ŷt

i ∈ b or ŷt
i = ⊥ for all i (all the

words are either unlabeled or labeled with an element
of bag).3 As soon as ŷt is no longer y-good the model
is updated to satisfy the ranking constraints:

∀i : ŷt−1
i = ⊥ , ∀c ∈ b, g(x, ŷt−1

+(i,c), u) > g(x, ŷt, u)

where ŷt−1
+(i,c) is a vector which is the same as ŷt−1 ex-

cept its ith element is set to the concept c. Intuitively,
if a label prediction for the word xj in position j does
not belong to the bag b then we require any prediction
that does belong to it to be ranked above this incor-
rect prediction. (If all such constraints are satisfied,
the correct bags are predicted.)

After a concept c from b has been picked, we remove
it from the bag. Otherwise the same element could

3For weak supervision, to simplify learning we chose to
initialize the weights C(·) and D(·) of our network using
CCA (Li & Shawe-Taylor (2006)) treating both x and y
as bags. For unambiguous words this essentially initializes
their representation similar to their corresponding concept.
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be picked again and again, resulting in an output se-
quence that does not violate the constraints. Yet, as
a bag can contain duplicates, this does not forbid as-
sociating the same concept to several words.

Why does this work? Consider again the example
“He cooks the rice” in Figure 3. We cannot resolve the
first word in the sentence “He” with the true concept
label <John> until we know that “rice” corresponds
to the concept <rice> which we know is located in the
kitchen, as is John, thereby making him the most likely
referent. This is why we choose to label words with
concepts in an order independent of the position in the
sentence in Algorithm 1, simply label from left to right
could not work. The algorithm has to learn which word
to label first, and presumably, it starts by labeling the
least ambiguous ones. This is what we have observed
experimentally. Once <rice> has been identified, its
features including its location will influence the func-
tion g(x, y, u) and the word “He” is more easily dis-
ambiguated. Simultaneously, our method must learn
the N dimensional representations gi(·) and h(·) such
that “He” matches with <John> rather than <Gina>,
i.e. equation (2) is a larger value. This should hap-
pen because during training <John> and “He” often
co-occur and allow to conclude the disambiguation.

Note that our system can learn the general principle
that two things that are in the same place are more
likely to be referred to in the same sentence, and does
not have to re-learn that for all possible places and
things. In general, it can resolve many kinds of am-
biguities, both from syntax, semantics, or a combina-
tion, such as, for example all the cases given in Section
2. Furthermore, the LaSO-type training for weak su-
pervision can implicitly learn the alignment between
words and concepts, even though it is never given.

4 Experiments

4.1 RoboCup commentaries

Before using any world knowledge, we wanted to assess
that our algorithm was able to be trained under weak
supervision on natural language. Hence we tested it
on the RoboCup commentary dataset4. This data
contains human commentaries on football simulations
over four games labeled with semantic descriptions of
actions: passes, offside, penalties, . . . along with the
players involved. For example, a typical sentence one
has to provide the semantic parse of is “Pink5 passed
the ball to Pink4 who kicked it offside”. However, each
training sentence given is weakly supervised with all
the actions that took place around the same time of

4see (Chen & Mooney, 2008) or http://www.cs.
utexas.edu/~ml/clamp/sportscasting/#data for details.

the commentary. We treated each semantic descrip-
tion as a “bag” of concepts for weak supervision.

Following Chen & Mooney (2008), we trained on one
match and tested on the other three, averaging over
all four possible splits and we report the “matching”
score: each input commentary is associated with sev-
eral actions, we measure how often the system retrieve
the correct one. We tackled this in two successive
steps: (1) a bag of labels is predicted using Algo-
rithm 1, (2) we choose to match to the bag from the
set of actions that has the highest cosine similarity
with the prediction. Our system achieves an F1 score
of 0.669. Previously reported methods from (Chen &
Mooney, 2008) Krisper (0.645 F1) and Wasper-Gen
(0.65 F1) achieve similar results (random matching
yields 0.465 F1). Results on this benchmark clearly
indicate that our method can handle both weak su-
pervision and natural language sentences.

4.2 Simulated world (with world knowledge)

Simulation RoboCup sentences do not involve any
lexical ambiguity. To evaluate the ability of our
method to use world knowledge to perform disam-
biguation, we thus created a simulation.

To conduct experiments on an environment with a rea-
sonably large size we built the following artificial uni-
verse designed to simulate a house interior. It contains
58 concepts: 15 verbs (<move>, <get>, <give>,...)
along with 10 actors (<John>, <dog>,. . . ), 15 small
objects (<water>, <chocolate>, <doll>,...), 6 rooms
(<kitchen>,. . . ) and 12 pieces of furniture (<couch>,
. . . ). We define the set of describing words for each
concept to contain at least two terms: an ambiguous
one (using a pronoun) and a unique one. 75 words are
used for generating sentences x ∈ X . The simulation
generates actions in the world along with sentences
that describe them using a simple grammar. For ex-
ample a simulation step could produce the results:

1. Pick the event <move>(<Gina>, <hall>).

2. Generate the training sample (x, b, u) =
(“she goes from the bedroom to the hall”,
{<hall>,<Gina>,<bedroom>,<move>}, u).

3. Update u with location(<Gina>) = <hall>.

Some examples of generated sentences are given in Ta-
ble 1. For our experiments we record 50,000 triples
(x, y, u) for training and 20,000 for testing. Around
55% of sentences contain lexical ambiguities.5

5The dataset can be downloaded from http://webia.
lip6.fr/~bordes/mywiki/doku.php?id=worlddata .
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x: he sits on the chair
y: <Mark> <sit> - - <chair>

x: the brother gives the toy to her
y: - <Mark> <give> - <toy> - <Gina>

x: the father gets some yoghurt from the sideboard
y: - <John> <get> - <yoghurt> - - <sideboard>

x: she goes from the bedroom to the kitchen
y: <Gina> <move> - - <bedroom> - - <kitchen>

Table 1: Simulated world examples. Our task is to label sentences x given world knowledge u (not shown).

Method Supervision Features Train Err Test Err

SVMstruct strong x + u (loc, contain) 18.68% 23.57%
NNLR strong x + u (loc, contain) 5.42% 5.75%

NNOF strong x 32.50% 35.87%
NNOF strong x + u (contain) 15.15% 17.04%
NNOF strong x + u (loc) 5.07% 5.22%
NNOF strong x + u (loc, contain) 0.0% 0.11%

NNOF weak x + u (loc, contain) 0.64% 0.72%

Table 2: Simulation results. We compare our order-free neural network (NNOF ) with world knowledge trained using

strong (line 6) and weak (line 7) supervision to several variants (no world knowledge - line 3; partial world knowledge –

lines 4-5; SVMs – line 1; and left-right inference – line 2). NNOF using full world knowledge performs best.

Algorithms We compare several models. Firstly,
we evaluate our “order-free” neural network based al-
gorithm presented in Section 3 (NNOF using x + u)
trained with two kinds of supervision: the strong set-
ting for which word-concepts alignments are given, and
our realistic weak setting using a bag. We compare to
a model with no access to world knowledge (NNOF

using x) or only partial access via location or con-
tainedby knowledge only (rather than both).

Finally, we compare to two more strongly supervised
methods: a greedy left-to-right labeling NN, NNLR (in
order to assess the necessity of order-free) and a struc-
tured output SVM, SVMstruct (Tsochantaridis et al.,
2005). For the SVM, the features from the world
model are used as additional input features and Viterbi
is used to decode the outputs. Only a linear model
was used due to the infeasibility of training non-linear
ones (and all the NNs are linear). In all experiments
we used word and concept dimension d = 20, g(·) and
h(·) have dimension N = 200, a sliding window width
of w = 13 (i.e., 6 words on either side of a central
word), and we chose the learning rate that minimized
the training error as described in Section 3.

Results The results are given in Table 2. The er-
ror rates express the proportion of predicted sequences
with at least one incorrect tag. Our model (NNOF )
learns to use world knowledge to disambiguate on this
task: it obtains a test error close to 0% (line 6) with
this knowledge, and around 35% error without (line
3). It is worth noting that training under weak super-
vision (last line) does not degrade accuracy: the same
model using the less realistic strong setting (line 6) is
only slightly better.

Confirming our intuitions about the inference (as in

Figure 3), the comparison with other algorithms high-
lights the following points: (i) order-free labeling of
concepts is important compared to more restricted la-
beling schemes such as left-right labeling (NNLR); (ii)
the architecture of our NN which embeds concepts is
able to capture some useful linguistic information and
thus helps generalization; this should be compared to
SVMstruct which does not perform as well. Note that
a nonlinear SVM or a linear SVM with hand-crafted
features are likely to perform better, but the former is
too slow and the latter is what we are trying to avoid
as such methods will not generalize to harder tasks.

We believe SVMstruct fails for several reasons. First,
it uses a Viterbi decoding that can only employ first-
order Markov interactions (for tractability). Thus,
simple reasoning involving previously labeled exam-
ples located ”too far” before or after the current word
is impossible. Second, its fixed feature representation
encodes world knowledge in a binary encoding and e.g.
one cannot learn that concepts sharing the same loca-
tion are likely to appear within a sentence other than
by memorizing all the possibilities. Our method can
discover that and adapt its feature representation ac-
cordingly while SVMstruct cannot.

We constructed our simulation such that all ambigui-
ties could be resolved with world knowledge, which is
why we can obtain almost 0%: this is a good sanity
check showing that our method is working well. We
believe it is a prerequisite that we do well here if we
hope to do well on harder tasks. The simulation we
built uses rules to generate actions and utterances, but
our learning algorithm uses no such hand-built rules
but instead successfully learns them. We believe this
could make our algorithm generalize to harder tasks.

One may still be concerned that the environment is
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simple and that we know a priori that the model we
are learning is sufficiently expressive to capture all the
relevant information in the world. In the real world
one might not have enough information to achieve such
high recognition rates. We therefore considered set-
tings where aspects of the world could not be cap-
tured directly in the model that is learned: NNOF

using x + u (contain) employs a world model with only
a subset of the relational information (it does not have
access to the loc relations). Similarly, we tried NNOF

using x + u (loc) as well. The results in Table 2 show
that our model still learns to perform well (i.e. bet-
ter than no world knowledge at all) in the presence
of hidden/unavailable world knowledge. Finally, if the
amount of training data is reduced we can still per-
form well. With 5000 training examples for NNOF

(x + u (loc, contain)) with the same parameters we ob-
tain 3.1% test error.

5 Conclusion and Future Work

We have described a general framework for language
grounding based on the task of concept labeling. The
learning algorithm we propose is scalable and flexible:
it learns with only weakly supervised raw data, and
no prior knowledge of how concepts in the world are
expressed in natural language. We have tested our
framework within a simulation, showing that it is pos-
sible to learn (rather than engineer) to resolve ambi-
guities using world knowledge. We also showed we can
learn with real human annotated data (RoboCup com-
mentaries). Although clearly only a first step towards
the goal of language understanding we feel our work
is an original way of tackling an important and cen-
tral problem. The most direct application of our work
is within computer games, but other communication
tasks could also apply with an increased effort.

In terms of algorithms, we feel two important re-
search directions concern (i) addressing the scalability
of learning with increased numbers of relations and
database concepts and (ii) improving the algorithms
for dealing with weak supervision for larger, noisier
and more realistic datasets.
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