
Learning to Disambiguate Natural Language Using
World Knowledge

Antoine Bordes, Nicolas Usunier
LIP6, Université Paris 6, Paris, France

{bordes,usunier}@poleia.lip6.fr

Jason Weston∗, Ronan Collobert
NEC Labs, Princeton, USA

{jasonw,collober}@nec-labs.com

Abstract

We present a general framework and learning algorithm for the task of concept
labeling: each word in a given sentence has to be tagged with the unique physical
entity (e.g. person, object or location) or abstract concept it refers to. Our method
allows both world knowledge and linguistic information to be used during learning
and prediction. We show experimentally that we can handle natural language and
learn to use world knowledge to resolve ambiguities in language, such as word
senses or coreference, without the use of hand-crafted rules or features.

1 Introduction

Much of the focus of the natural language processing community lies in solving syntactic or semantic
tasks with the aid of sophisticated machine learning algorithms and the encoding of linguistic prior
knowledge. For example, a typical way of encoding prior knowledge is to hand-code syntax-based
input features or rules for a given task. However, one of the most important features of natural
language is that its real-world use (as a tool for humans) is to communicate something about our
physical reality or metaphysical considerations of that reality. This is strong prior knowledge that is
simply ignored in most current systems.

For example, in current parsing systems there is no allowance for the ability to disambiguate a
sentence given knowledge of the physical reality of the world. So, if one happened to know that Bill
owned a telescope while John did not, then this should affect parsing decisions given the sentence
“John saw Bill in the park with his telescope.” Likewise, in terms of reference resolution one could
disambiguate the sentence “He passed the exam.” if one happens to know that Bill is taking an exam
and John is not. Further, one can improve disambiguation of the word bank in “John went to the
bank” if you happen to know whether John is out for a walk in the countryside or in the city. Many
human disambiguation decisions are in fact based on whether the current sentence agrees well with
one’s current world model. Such a model is dynamic as the current state of the world (e.g. the
existing entities and their relations) changes over time.

Concept labeling In this paper, we propose a general framework for learning to use world knowl-
edge called concept labeling. The “knowledge” we consider is rudimentary and can be viewed as
a database of physical entities existing in the world (e.g. people, locations or objects) as well as
abstract concepts, and relations between them, e.g. the location of one entity can be expressed in
terms of its relation with another entity. Our task thus consists of labeling each word of a sentence
with its corresponding concept from the database.

The solution to this task does not provide a full semantic interpretation of a sentence, but we believe
it is a first step towards that goal. Indeed, in many cases, the meaning of a sentence can only
be uncovered after knowing exactly which concepts, e.g. which unique objects in the world, are

∗Now at Google Labs, New York, USA.

1

involved. If one wants to interpret “He passed the exam”, one has to infer not only that “He” refers
to a “John”, and “exam” to a school test, but also exactly which “John” and which test it was. In that
sense, concept labeling is more general than the traditional tasks like word-sense disambiguation,
co-reference resolution, and named-entity recognition, and can be seen as a unification of them.

Learning algorithm We then go on to propose a tractable algorithm for this task that seamlessly
learns to integrate both world knowledge and linguistic content of a sentence without the use of any
hand-crafted rules or features. This is a challenging goal and standard algorithms do not achieve
it. Our algorithm is first evaluated on human generated sentences from RoboCup commentaries [2].
Yet this data set does not involve world knowledge. Hence we present experiments using a novel
simulation procedure to generate natural language and concept label pairs: the simulation generates
an evolving world, together with sentences describing the successive evolutions. These experiments
demonstrate that our algorithm can learn to use world knowledge for word disambiguation and
reference resolution when standard methods cannot.

Although clearly only a first step towards the goal of language understanding, which is AI complete,
we feel our work is an original way of tackling an important and central problem. In a nut-shell, we
show one can learn (rather than engineer) to resolve ambiguities using world knowledge, which is a
prerequisite for further semantic analysis, e.g. for communication.

Previous Work Our work concerns learning the connection between two symbolic systems: the
one of natural language and the one, non-linguistic, of the concepts present in a database. Mak-
ing such an association has been studied as the symbol grounding problem [8] in the literature.
More specifically, the problem of connecting natural language to another symbolic system is called
grounded language processing [11]. Some of such earliest works involved hand-coded parsing and
no learning at all, perhaps the most famous being situated in blocks world [15]. More recent works
on grounded language acquisition have focused on learning to match language with some other rep-
resentations. Grounding text with a visual representation also in a blocks-type world was tackled
in [6]. Other works use visual grounding [13, 17, 1], or a representation of the intended meaning
in some formal language [18, 7, 9, 16, 2]. Example applications of such grounding include using
the multimodal input to improve clustering (with respect to unimodal input) (e.g. [13]), word-sense
disambiguation [1, 7] or semantic parsing [18, 9, 16, 2].

2 Concept Labeling

We consider the following setup. One must learn a mapping from a natural language sentence
x ∈ X to its labeling in terms of concepts y ∈ Y , where y is an ordered set of concepts, one concept
for each word in the sentence, i.e. y = (c1, . . . , c|x|) where ci ∈ C, the set of concepts. These
concepts belong to a current model of the world which expresses one’s knowledge of it. We term it
a “universe”. The framework of concept labeling is illustrated in Figure 1.

Universe We define the universe as a set of concepts and their relation to other concepts: U =
(C,R1, . . . ,Rn) where n is the number of types of relation and Ri ⊂ C2, ∀i = 1, . . . , n. Much
work has been done on knowledge representation itself (see [12] for an introduction). This is not the
focus of this paper and so we made the simplest possible choice.

The universe we consider is in fact nothing more than a relational database, where records corre-
spond to concepts and each kind of interaction between concepts is a relation table. To make things
concrete we now describe the template database we use in this paper.

1. Each concept c of the database is identified using a unique string name(c). Each physical
object or action (verb) of the universe has its own referent. For example, two different
cartons of milk will be referred to as <milk1> and <milk2>1.

2. We consider two relation tables2 that can be expressed with the following formula:
• location(c) = c′ with c, c′ ∈ C: the location of the concept c is the concept c′.
• containedby(c) = c′ with c, c′ ∈ C: the concept c′ physically holds the concept c.

1Here, we use understandable strings as identifiers for clarity but they have no meaning for the system.
2Of course this list is easily expanded upon. Here, we give two simple properties of physical objects.

2

He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

<Gina> <Mark>

locatio
n

<John> <cook> <rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location

Figure 1: Concept labeling. The universe u
contains all the known concepts that exist, and their
relations. The goal is to predict the sequence y of
the concepts that each word in the sentence x refers
to, including the empty concept “-”.

He cooks the rice

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

b:

u:

<Gina> <Mark>

loc
at
io
n

<cook>
<John>

<rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location

Figure 2: Training triple. In our setting, one
trains under weak supervision. The supervision
bag b consists of the set of concepts related to the
sentence x. The alignment between words and con-
cepts is not given and must be discovered.

What is this useful for? Our overall goal is to construct a semantic representation of a sentence
which can be used to build and modify the underlying world model. Our approach can be applied
when a current model of the environment (equivalent to our universe) is available. A immediate
realistic setting is within a computer game environment, e.g. multiplayer Internet games. Real-
world settings are also possible but require, for example, technologies for building world knowledge
beyond the scope of this work.

Concept labeling on its own is necessary but not sufficient to provide a complete semantic represen-
tation; but adding a grammar as it is done in semantic parsing [18, 9, 16, 2], can provide promising
semantic representations3. Hence, as a first step, simply adding semantic role labeling [10] would
allow to know both the predicate concepts and the roles of other concepts with respect to those predi-
cates. For example, “He cooks the rice” from Figure 1 would be labeled with “He/ARG1 cooks/REL
the/- rice/ARG2” as well as with the concepts y.

Our system would then have the potential to disambiguate examples such as the following: “John
went to the kitchen and Mark stayed in the living room. He cooked the rice and served dinner.” The
world knowledge that John is in the kitchen comes from the semantic representation predicted from
the first sentence. This is used to resolve the pronoun “he” using further background knowledge that
cooking is done in the kitchen. All of this inference could be learnt from examples.

Weak supervision Usually in sequence labeling, learning is carried out using fully supervised data
composed of input sequences explicitly aligned with label annotations. To learn the task of concept
labeling, this would result in training examples composed by triples {x, y, u} ∈ X × Y × U such
as the one displayed on Figure 1.

Yet, in our case, we want our model to be able to learn from weakly supervised data of just observing
language given the evolving world-state context. Hence, in this paper, we consider weakly labeled
training triples {x, b, u}: for a given input sentence x, the supervision b is a “bag” (set) of labels of
size |x| (there is no information about ordering/alignment of elements of b to x). This is a realistic
setting and similar to the setting of [9] except we learn to use world knowledge. An illustrating
example of a training triple (x, b, u) is given on Figure 2. Hence, our algorithm trains using weakly
supervised triples, such as the one depicted on the right hand side.

Why is this task challenging? The main difficulty of concept labeling arises with ambiguous
words that can be mislabeled. A concept labeling algorithm must be able to use the available infor-
mation to solve the ambiguities. In our work, we consider the following kinds of ambiguities, that
can be mixed within a sentence:

3Contrary to our work, current semantic parsers do not take into account any world knowledge and thus can
not interact with their environment.

3

He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

Step 0:

<Gina>

<Mark>

locatio
n

He cooks the rice

? ? ? ?

x:

y:

u:

Step 4:

(2)

(1)

<kitchen>

<garden>

<John>

<rice><cook>

<Gina>

<Mark>

He cooks the rice

? ? ? ?

x:

y:

u:

Step 5:

<kitchen>

<garden>

<John> <rice><cook>

<Gina>

<Mark>

Figure 3: Inference scheme. Step 0 defines the task: find the concepts y given a sentence x and the current
state of the universe u. For simplicity only relevant concepts and location relations are depicted. First, non-
ambiguous words are labeled in steps 1-3 (not shown). In step 4, to tag the ambiguous pronoun “he”, the system
has to combine two pieces of information: (1) <rice> and the unknown concept might share the same location,
<kitchen>, and, (2) “he” only refers to a subset of concepts in u (the males).

• Location-based ambiguities that can be resolved by the locations of the concepts. Exam-
ples: “The father picked it up” or “He got the coat in the hall”. Information about the
location of the father, co-located objects and so on can improve the disambiguation.

• Containedby-based ambiguities that can be resolved through knowledge of con-
tainedby relations as in “the milk in the closet” or “the one in the closet” where there
are several cartons of milk (e.g. one in the fridge and one in the closet).

• Category-based: A concept is identified in a sentence by an ambiguous term and the
disambiguation can be resolved by using semantic categorization. Example: “He cooks the
rice in the kitchen” where two persons, a male and a female, are in the kitchen.

The first two kinds of ambiguities require the algorithm to be able to learn rules based on its available
universe knowledge. The last kind can be solved using linguistic information such as word gender
or category. However, the necessary rules or linguistic information are not given as input features
and again the algorithm has to learn to infer them. This is one of the main goals of our work.

Figure 3 describes the necessary steps for an algorithm to perform such disambiguation. Even for a
simple sentence the procedure is rather complex and somehow requires “reasoning”.

3 Learning Algorithm

Inference A straight-forward approach one could adopt to learn a function that maps from sen-
tence x to concept sequence y given u is to consider a model of the form:

y = f(x, u) = argmaxy′ g(x, y′, u), (1)

where g(·) returns a scalar that should be a large value when the output concepts y′ are con-
sistent with both the sentence x and the current state of the universe u. To find such a func-
tion, one can choose a family of functions g(·) and pick the member which minimizes the error:
L =

∑
!(b, f(x, u)) where the loss function ! is 1 if b and the set containing the elements of

f(x, u) differ, and 0 otherwise. However, one practical issue of this choice of algorithm is that the
exhaustive search over all possible concepts in equation (1) could be rather slow.

The intuition in Figure 3 rather suggests us to use a greedy “order-free” inference process: we label
the word we are most confident in (possibly the least ambiguous, which can be in any position in the
sentence) and then use the known features of that concept to help label the remaining ones.

This is detailed in Algorithm 1. At each step, the set of output candidates St does not depend on
the position in the sentence, one can label any thus far unlabeled word with a concept (line 3). The
confidence-based choice is carried out with the function g(·) (line 4), which is learnt to optimize the
loss of interest L. Note that Algorithm 1 is quite efficient as it requires only |C|× |x|2 computations
of g(·), whereas solving (1) requires |C||x| (and |C|% |x|).

4

Algorithm 1 Order-free inference for a given input (x, u)
1: Start with predictions ŷ0

j = ⊥ , j = 1, . . . , |x|, where ⊥ means unlabeled.
2: while t < |x| do
3: Increment t = t + 1.
4: Define St, the set of output candidates : St =

S
j: ŷt−1

j =⊥
˘
y′

˛̨
y′j ∈ C and ∀i #= j, y′i = ŷt−1

i

¯
.

5: Label greedily the concept with the highest score: ŷt = argmaxy′∈St
g(x, y′, u).

6: end while
7: Output the predicted sequence of concepts ŷ|x|.

Family of functions Following [4], we chose a neural-network architecture for g(·) because we
expected the network to encode some of the linguistic information required to perform disambigua-
tion (such as, “he” only refers to males, in the example of Figure 3). The actual form of g(·) is:

g(x, y, u) =
|x|∑

i=1

gi(x, y−i, u)%h(yi, u) (2)

where gi(·) ∈ RN is a “sliding window” representation of width w centered on the ith position in
the sentence, y−i is the same as y except that the ith position (y−i)i = ⊥ , and h(·) ∈ RN is a linear
mapping into the same space as g(·). We constrain ||h(⊥ , u)|| = 0 so that as yet unlabeled outputs
do not play a role. A less mathematical explanation of this model is as follows: gi(·) takes a window
of the input sentence and previously labeled concepts centered around the ith word and embeds
them into an N dimensional space. h(yi, u) embeds the ith concept into the same space, where both
mappings are learnt. The magnitude of their dot product in this space indicates how confident the
model is that the ith word, given its context, should be labeled with concept yi. This representation
is also useful from a computational point of view because gi(·) and h(·) can be cached and reused
in Algorithm 1, making inference fast.

gi(·) and h(·) are simple two-layer linear neural networks in a similar spirit to [4]. The first
layer of both are so-called “Lookup Tables”. We represent each word W in the dictionary with
a unique vector D(W) ∈ Rd and every unique concept name name(c) also with a unique vector
C(name(c)) ∈ Rd, where we learn these mappings. No hand-crafted syntactic features are used.

To represent a concept and its relations we do something slightly more complicated. A particular
concept c (e.g. an object in a particular location, or being held by a particular person) is expressed
as the concatenation of the three unique concept name vectors:

C̄(c) = (C(name(c)), C(name(location(c))), C(name(containedby(c)))). (3)

In this way, the learning algorithm can take these dynamic relations into account, if they are relevant
for the labeling task. Hence, the first layer of the network gi(·) outputs4:

g1
i (x, y−i, u) =

“
D(xi−w−1

2
), . . . , D(xi+ w−1

2
), C̄((y−i)i−w−1

2
), . . . , C̄((y−i)i+ w−1

2

”
.

The second layer is a linear layer that maps from this 4wd dimensional vector to the N dimensional
output, i.e. overall we have the function (with Wg ∈ '4wd×N and bg ∈ 'N) :

gi(x, y−i, u) = Wg g1
i (x, y−i, u) + bg.

Likewise, h(yi, u) has a first layer which outputs C̄(yi), followed by a linear layer mapping from
this 3d dimensional vector to N , i.e. (with Wh ∈ '3d×N and bh ∈ 'N)

h(yi, u) = Wh C̄(yi) + bh.

Overall, we chose a linear architecture that avoids strongly engineered features, assumes little prior
knowledge about the mapping task in hand, but is powerful enough to capture many kinds of rela-
tions between words and concepts.

4Padding must be used when indices are out of bounds.

5

LaSO-type training We train our system online by employing a variation on the LaSO (Learning
As Search Optimization) training process [5]. LaSO’s central idea is to mix training and inference
in a single learning for search strategy. During training, we thus perform inference on each given
triple (x, b, u) using a version of Algorithm 1 modified in two ways.

The first modification is the addition of an update step of the model parameters. At each round, we
define the predicted labeling ŷt as y-good, compared to the supervision bag b, if either ŷt

i ∈ b or
ŷt

i = ⊥ for all i (all the words are either unlabeled or labeled with an element of bag). As soon
as ŷt is no longer y-good, the model is updated with a stochastic gradient step, similar to the “early
update” of [3], to satisfy the ranking constraints:

∀i : ŷt−1
i = ⊥ , ∀c ∈ b, g(x, ŷt−1

+(i,c), u) > g(x, ŷt, u) (4)

where ŷt−1
+(i,c) is a vector which is the same as ŷt−1 except its ith element is set to the concept c.

Intuitively, if a label prediction for the word xj in position j does not belong to the bag b then we
require any prediction that does belong to it to be ranked above this incorrect prediction. When all
such constraints are satisfied, the correct bags are predicted.

The second modification concerns the management of the supervision bag b: after a concept c from
b has been picked, we remove it from the bag. Otherwise the same element could be picked again
and again, resulting in an output sequence that does not violate the constraints (4).

Why does this work? Consider again the example “He cooks the rice” in Figure 3. We cannot
resolve the first word in the sentence “He” with the true concept label <John> until we know that
“rice” corresponds to the concept <rice> which we know is located in the kitchen, as is John,
thereby making him the most likely referent. This is why we choose to label words with concepts
in an order independent of the position in the sentence in Algorithm 1 because simply label from
left to right does not work. The algorithm has to learn which word to label first, and presumably, it
labels the least ambiguous words first. This is what we have observed experimentally. Once <rice>
has been identified, its features including its location will influence the function g(x, y, u) and the
word “He” is more easily disambiguated. Simultaneously, our method must learn the N dimen-
sional representations gi(·) and h(·) such that “He” matches with <John> rather than <Gina>, i.e.
equation (2) is a larger value. This should happen because during training <John> and “He” often
co-occur. This concludes the disambiguation.

Note that our system can learn the general principle that two things that are in the same place are
more likely to be referred to in the same sentence, and does not have to re-learn that for all possible
places and things. In general, our model can resolve many kinds of ambiguities, both from syntax,
semantics, or a combination, for example all the cases given in Section 2. Furthermore, the LaSO-
type training based on the constraints (4) can implicitly learn the alignment between words and
concepts, even though it is never given.

4 Experiments
4.1 RoboCup Commentaries

Before using any world knowledge, we wanted to assess that our algorithm was able to be trained
under weak supervision on natural language. Hence we tested it on the RoboCup commentary
dataset5. This data contains human commentaries on football simulations over four games labeled
with semantic descriptions of actions: passes, offside, penalties, . . . along with the players involved.
We treated each semantic description as a “bag” of concepts for weak supervision. We trained on
one match and tested on the other three, averaging over all four possible splits.

As in [2], we report the “matching” score: each input commentary is associated with several actions,
we measure how often the system retrieve the correct one. We tackled this in two successive steps:
(1) a bag of labels is predicted using Algorithm 1, (2) we choose to match to the bag from the set of
actions that has the highest cosine similarity with the prediction. Our system achieves an F1 score of
0.669. Previously reported methods from [2] Krisper (0.645 F1) and Wasper-Gen (0.65 F1) achieve
similar results (random matching yields 0.465 F1). Results on this benchmark clearly indicate that
our method can handle both weak supervision and natural language sentences.

5see [2] or http://www.cs.utexas.edu/˜ml/clamp/sportscasting/#data for details.

6

Method Supervision Features Train Err Test Err

SVMstruct strong x + u (loc, contain) 18.68% 23.57%
NNLR strong x + u (loc, contain) 5.42% 5.75%

NNOF strong x 32.50% 35.87%
NNOF strong x + u (loc, contain) 0.0% 0.11%
NNOF weak x + u (loc, contain) 0.64% 0.72%

Table 1: Simulation results. We compare our order-free neural network using world knowledge and weak
supervision (line 5) to strongly supervised variants (line 1-4). A strong supervision provides training examples
in which words and concepts are aligned.

4.2 Simulated World

Simulation RoboCup sentences do not involve any lexical ambiguity. To evaluate the ability of
our method to use world knowledge to perform disambiguation, we thus created a simulation.

To conduct experiments on an environment with a reasonably large size we built the following artifi-
cial universe designed to simulate a house interior. It contains 58 concepts: 15 verbs (<move>,
<get>, <give>,...) along with 10 actors (<John>, <dog>,. . .), 15 small objects (<water>,
<chocolate>, <doll>,...), 6 rooms (<kitchen>,. . .) and 12 pieces of furniture (<couch>, . . .).
We define the set of describing words for each concept to contain at least two terms: an ambiguous
one (using a pronoun) and a unique one. 75 words are used for generating sentences x ∈ X . The
simulation generates actions in the world along with sentences that describe them using a simple
grammar. For example a simulation step could produce the results:

1. The event <move>(<Gina>, <hall>) is picked.
2. Generate the training sample (x, b, u) = (“she goes from the bedroom to the hall”,

{<hall>,<Gina>,<bedroom>,<move>}, u).
3. Modify (update) u with location(<Gina>) = <hall>.

The simulation code can generate sentences like “he sits on the chair”, “she goes from the bedroom
to the kitchen” or “the brother gives it to his sister”. For our experiments we record 50,000 triples
(x, y, u) for training and 20,000 for testing. Around 55% of sentences contain lexical ambiguities.

Algorithms We compare several models. Firstly, we evaluate our “order-free” neural network
based algorithm presented in Section 3 (NNOF using x + u) trained with two kinds of supervision:
our realistic weak setting using a bag and the strong setting for which words-concepts alignments are
given. We also train a model with strong supervision but no access to the universe (NNOF using x).
The models with world knowledge have access to the location and containedby features of all con-
cepts in the universe. For the model without world knowledge we remove the C(name(location(c)))
and C(name(containedby(c))) features from the concept representation in equation (3) and are left
with a pure tagging task, no different to tasks like named entity recognition.

Finally, we compare our weakly trained model to two more strongly supervised methods: a greedy
left-to-right labeling NN (NNLR) and a structured output SVM [14] (SVMstruct). For the SVM, the
features from the world model are used as additional input features and Viterbi is used to decode the
outputs. Only a linear model was used due to the infeasibility of training non-linear ones (all the
NNs are linear). In all experiments we used word and concept dimension d = 20, g(·) and h(·) have
dimension N = 200, a sliding window width of w = 13 (i.e., 6 words on either side of a central
word), and we chose the learning rate that minimized the training error as described in Section 3.

Results The results are given in Table 1. The error rates express the proportion of predicted se-
quences with at least one incorrect tag. Our model (NNOF) learns to use world knowledge to
disambiguate on this task: it obtains a test error close to 0% with this knowledge, and around 35%
error without. It is worth noting that training under weak supervision (line 5) does not degrade
accuracy: the same model using the less realistic strong setting (line 4) is only slightly better.

Confirming our intuitions about the inference (as in Figure 3), the comparison with other algorithms
highlights the following points: (i) order-free labeling of concepts is important compared to more

7

restricted labeling schemes such as left-right labeling (NNLR); (ii) the architecture of our NN which
embeds concepts is able to capture some useful linguistic information and thus helps generalization;
this should be compared to SVMstruct which does not perform as well. Note that a nonlinear SVM
or a linear SVM with hand-crafted features are likely to perform better, but the former is too slow
and the latter is what we are trying to avoid as such methods are brittle.

We constructed our simulation such that all ambiguities could be resolved with world knowledge,
which is why we can obtain almost 0%: this is a good sanity check showing that our method is
working well. We believe it is a prerequisite that we do well here if we hope to do well on harder
tasks. The simulation we built uses rules to generate actions and utterances, but our learning algo-
rithm uses no such hand-built rules but instead successfully learns them. This flexibility is the key
to success in real tasks, where brittle engineering approaches have been tried with moderate success.

Finally, if the amount of training data is reduced we can still perform well. With 5000 training
examples for NNOF (x + u(loc, contain)) with the same parameters we obtain 3.1% test error.

5 Conclusion and Future Work

We have described a general framework for language grounding based on the task of concept la-
beling. The learning algorithm we propose is scalable and flexible: it learns with only weakly
supervised raw data, and no prior knowledge of how concepts in the world are expressed in nat-
ural language. We have tested our framework within a simulation, showing that it is possible to
learn (rather than engineer) to resolve ambiguities using world knowledge. We also showed we
can learn with real human annotated data (RoboCup commentaries). Although clearly only a first
step towards the goal of language understanding we feel our work is an original way of tackling an
important and central problem. The most direct application of our work is within computer games,
but other communication tasks could also apply with an increased effort.

References
[1] K. Barnard and M. Johnson. Word Sense Disambiguation with Pictures. Artificial Intelligence, 167(1-

2):13–30, 2005.
[2] D. Chen and R. Mooney. Learning to Sportscast: A Test of Grounded Language Acquisition. In ICML

’08.
[3] M. Collins and B. Roark. Incremental parsing with the perceptron algorithm. In ACL ’04.
[4] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural

Networks with Multitask Learning. In ICML ’08.
[5] H. Daumé III and D. Marcu. Learning as Search Optimization: Approximate Large Margin Methods for

Structured Prediction. In ICML ’05.
[6] J. Feldman, G. Lakoff, D. Bailey, S. Narayanan, T. Regier, and A. Stolcke. L 0-The first five years of an

automated language acquisition project. Artificial Intelligence Review, 10(1):103–129, 1996.
[7] M. Fleischman and D. Roy. Intentional Context in Situated Language Learning. In CoNLL ’05.
[8] S. Harnad. The Symbol Grounding Problem. Physica D, 42(1-3):335–346, 1990.
[9] R. Kate and R. Mooney. Learning Language Semantics from Ambiguous Supervision. In AAAI ’07.

[10] P. Kingsbury and M. Palmer. From Treebank to PropBank. In ICLRE ’02.
[11] D. Roy and E. Reiter. Connecting Language to the World. Artificial Intelligence, 167(1-2):1–12, 2005.
[12] S. Russell, P. Norvig, J. Canny, J. Malik, and D. Edwards. Artificial intelligence: a modern approach.

Prentice Hall Englewood Cliffs, NJ, 1995.
[13] J. Siskind. Grounding Language in Perception. Artificial Intelligence Review, 8(5):371–391, 1994.
[14] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and

Interdependent Output Variables. JMLR, 6:1453–1484, 2005.
[15] T. Winograd, M. Barbour, and C. Stocking. Understanding natural language. Academic Press NY, 1972.
[16] Y. Wong and R. Mooney. Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus.

In ACL ’07.
[17] C. Yu and D. Ballard. On the Integration of Grounding Language and Learning Objects. In AAAI ’04.
[18] L. Zettlemoyer and M. Collins. Learning to Map sentences to Logical Form: Structured Classification

with Probabilistic Categorial Grammars. In UAI ’05.

8

