A GENTLE HESSIAN FOR EFFICIENT GRADIENT DESCENT

Ronan Collobert and Samy Bengio

IDIAP, Martigny, Switzerland
{col | ober, bengi o}@ di ap. ch

ABSTRACT

Several second-order optimization methods for gradient descent
algorithms have been proposed over the years, but they usually
need to compute the inverse of the Hessian of the cost function (or
an approximation of this inverse) during training. In most cases,
this leads to an O(n?) cost in time and space per iteration, where
n is the number of parameters, which is prohibitive for large n.
We propose instead a study of the Hessian before training. Based
on a second order analysis, we show that a block-diagonal Hessian
yields an easier optimization problem than a full Hessian. We also
show that the condition of block-diagonality in common machine
learning models can be achieved by simply selecting an appropri-
ate training criterion. Finally, we propose a version of the SVM
criterion applied to MLPs, which verifies the aspects highlighted
in this second order analysis, but also yields very good general-
ization performance in practice, taking advantage of the margin
effect. Several empirical comparisons on two benchmark datasets
are given to illustrate this approach.

1. INTRODUCTION

Optimization by gradient descent is widely used by various ma-
chine learning algorithms such as back-propagation of the error in
Multi-Layer Perceptrons (MLPs) and Radial Basis Functions [1].
Unfortunately, empirical evidences show that results obtained af-
ter training a model by gradient descent are often highly vari-
able. Hence, in the last few decades, several researchers pro-
posed various enhancements [2] to classical gradient descent algo-
rithms. Most of these enhancements focus on variations of second-
order optimization methods [3], and thus have to compute at each
training iteration the inverse of the Hessian® of the cost function.
Therefore, the time complexity of the resulting algorithms grows
in O(n?) per iteration, and in O(n?) in space, where n is the num-
ber of parameters. Thus these algorithms become useless for very
large datasets and models. Some enhancements which compute it-
eratively the inverse of the Hessian have been proposed but most
of them still have a cost in O(n?) per iteration. In the end, most of
the time, people rely on simple stochastic gradient descent which
has a cost in O(n) per iteration, and which in general outperforms
most other methods on large problems [2].

Instead of dealing with the Hessian during training as several
other methods do, we propose a study of the Hessian of the cost
function before training. Thus, after a presentation of the frame-
work in Section 2, we analyze in Section 3 the cost function, us-

The authors acknowledge financial support from the Swiss NCCR
(IM)2 project.
Iwhich is the second order derivative of the cost with respect to pairs of
parameters.

ing a second order Taylor approximation. We show that a block-
diagonal Hessian yields an easier optimization problem than a full
Hessian. We also illustrate this with the case of MLPs where the
condition of block-diagonality can be achieved by simply selecting
an appropriate training criterion. Then, in Section 4, we propose a
version of the Support Vector Machine (SVM) criterion applied to
MLPs, which verifies the aspects highlighted in this second order
analysis, but also yields very good generalization performance in
practice, taking advantage of the margin effect.

2. FRAMEWORK

We consider two-class classification problems: given a training set
of T examples (x¢,yt),_, p With (x¢,y:) € R4 x{—1, 1} where
x; is the input vector of the t* example, and y; is the correspond-
ing class, we would like to find a function f(-) such that

f(x¢) >0 wheny, =1
f(x¢) <0 wheny, = —1 } vt. 1)

Our interest is to study functions which can be trained by gradient
descent techniques. Due to the lack of space, we will focus only on
Multi-Layer Perceptrons (MLPs), but this work can be extended to
other models [4]. The MLP we consider here has one hidden layer
of N units:

N
FO)=b+) anh(wy x) ¥

where w,, € R? are the weights of the hidden layer,? o, € R are
the weights of the output layer, and b is the bias of the output layer.
h(-) is a transfer function which is usually a hyperbolic tangent.
It has been shown in [5] that MLPs with one hidden layer and
hyperbolic tangent transfer functions are universal approximators
of real valued functions. This means that there exist at least one
MLP such as in (2) which satisfies conditions (1).

2.1. Training with Gradient Descent

Given a model fg(-) which could be an MLP, we select a cost
function C'(fe(x), v), and we minimize the cost

T
(2 — argmain%Z;C(fe(Xt), Yt) , (3)

2To simplify the notation, we suppose here that the last coordinate of
the x vector is 1, and thus the bias of unit n is represented by the last
coordinate of wy,.

using stochastic gradient descent. One of the most common cost
functions used for classification is the mean-squared error (MSE):

Clfo(x). 9) = 5(y — fa(a))?

It can be shown [1] that with an infinite amount of data, the min-
imum of the MSE criterion is obtained when fo(x) is equal to
the true posterior probability® p(y|x). It has also been shown [6]
that taking the decision which maximizes p(y|x) leads to the min-
imum classification error rate. Hence, the use of the MSE criterion
is relevant for classification. However, in a likelihood framework,
minimizing the MSE criterion is equivalent to maximizing a likeli-
hood under the hypothesis that y is generated from a smooth func-
tion with added Gaussian noise. Since y is a binary variable, some
researchers prefer to consider y as coming from a Bernoulli distri-
bution, which leads to another well-known criterion, often called
“cross-entropy” (CE) [1]. This one can be rewritten as the follow-
ing, in the case of a two-class classification problem:

C(fo(x),y) = —logpe(ylx)
= log(1 +exp(—yfo(x))) . 4

Once again, with an infinite amount of data, pe (y|x) which maxi-
mizes the likelihood tends to the true posterior probability p(y|x).
Thus, as for the MSE criterion, the CE criterion minimizes ulti-
mately the classification error.

2.2. Experimental Setup

Experiments shown in this paper have been performed using the
two biggest datasets available on the UCI web site. The first one
is UCI Forest. We modified the 7-class classification problem into
a balanced binary classification problem where the goal was to
separate class 2 from the others. We used 100,000 examples for
training, 10,000 for validation and 50,000 for testing. The sec-
ond dataset is UCI Connect-4. We modified the 3-class classifica-
tion problem into a balanced binary classification problem where
the goal was to separate class “won” against the others. We used
50,000 examples for training, 7,000 for validation and 10,000 for
testing. Validation sets were only used to select hyper-parameters
of the models in Section 4.

3. LOCAL BEHAVIOR OF COST FUNCTIONS

In this section, we will focus only on the training performance of
several architectures, trained with gradient descent. Table 1 shows

Criterion Train Err. (%) Train MSE
Forest | Connect-4 | Forest | Connect-4

MSE 13.0 8.2 0.41 0.31

CE 10.3 0.0 0.30 0.01

Table 1. Train errors for MLPs trained with different criterions.

a preliminary comparison of an MLP trained using the MSE and
CE criteria. The classification error rate has been chosen to com-
pare performances because both MSE and CE criteria tend to mini-
mize the classification error, as highlighted in the previous section.

Swith class labels y € {0, 1}, which can be obtained in our case by
simple rescaling.

We added an evaluation of the MSE error* to be more convincing.
We chose an arbitrary large number (500) of hidden units. More-
over, all other hyper-parameters, such as the learning rate, were
also selected according to the training set. For both datasets, the
training performance of an MLP trained with MSE criterion is sta-
tistically significantly worse (with 99% confidence) than an MLP
trained with the CE criterion. The fact that, on these two datasets,
an MLP trained with the CE criterion has a significantly lower
MSE error than an MLP trained with the MSE criterion clearly de-
notes an optimization problem with the MLP trained with the MSE
criterion.

3.1. Second Order Optimization Algorithms

To understand these differences of performances, we propose to
study the local behavior of each model and its corresponding cost
function. Given a model fo(-) where we want to optimize pa-
rameters 6, and given a vector of parameters 6°, the cost function

Ey 4 (0) = C(fo(x), y)) can be approximated with respect to 6
around 6°, by a second order Taylor expansion:
Ex.y (0) = Exy (90)
_po\T aEx»y(BO)
+(60—06°) 50
1 o\T o o
+§(0 —0°)" Hyxy(60°)(60—6°)
+o([| — 6°[I2) ®)

where JEx,,(6°)/06 and Hx ,(0°) are respectively the gradient
and the Hessian matrix of Ex , with respect to 6, evaluated at 6°.
We use ||.||» as the Euclidean norm for vectors, and o(||6 — 6°]|2)
to represent a term negligible with respect to ||@ — 6°]|2.

Because of the lack of space we will not focus on the first
derivative in this paper. Our main concern will be the study of the
Hessian.

3.2. Advantage of a Block Diagonal Hessian

Let us consider a model fo(-) where the parameter vector 6 can
be segmented into several sub-vectors @ = (61, 02 ...80,). Then,
given a current state 8°, and if we we forget negligible terms with
respect to ||@ — @°|2, the local quadratic approximation (5) can be
rewritten as:

Ex,y(e) = Ex,y(eo)
JrZB*HOTaE’y() (6)

00
+Z (0: — 07)" H,%,(0°) (8, — 65)

where HW is the matrix 2 36,06 89 using vectorial derivation. In the

ideal case where H , is block- dlagonal, that is if H?, = 0 for
1 # 7, this leads to

Fxy(8) = Exy(8°) + 3 Fxy (6:) @)

4In order to have comparable results, we rescaled the output probability
pe (y|x) of the MLP trained with the CE criterion between -1 and 1.

where

T OEx 4(0°)
00

1 o 1,1 o o
+5(6: — 69)7 HL,(6°) (6 07)

Evy(0:) = (66

Equation (7) shows that the error function Ex () can be split
into n independent error functions E% ,(6;). In other words, the
optimization of a sub-vector ; is locally independent of the others
65, j # i. Therefore, the optimization problem is much simpler
than with a full Hessian where the modification of only one pa-
rameter would also affect the modification of all others.

If Hy,y is not truly block-diagonal, it can be shown that the
more the spectral norm || %7, || of the blocks of the Hessian out-
side the diagonal tends to zero, the more equation (7) is accu-
rate, and the more training of each sub-vectors 6; becomes in-
dependent. Generally speaking, we can conclude that the more the
Hessian is block-diagonal, the easier should be the training of the
model.

3.3. lllustration

Let us now analyze the Hessian of the MLP given in (2) that would
be respectively trained with the MSE and CE criteria. First the
Hessian when trained with the MSE criterion:

2
Ex L.
;Tavgj = aiay h/(w;r X) h'(w;r X) xx T (i#7) .
Note that there is no obvious reason for this Hessian to tend to
zero, whereas if we compute the Hessian with the cross-entropy
(CE) criterion we get:

? Ex

W = po(y[x)pe(—ylx)

x azoy b (wi x)R'(w] x)xxT (i #j) .

Here the term po (y|x)pe (—y|x) = po(y|x)(1 — pe(y[x)) will
tend very quickly to zero, since we are training the MLP to maxi-
mize pe (y|x). It will push the Hessian obtained with the CE cri-
terion toward almost block-diagonality (one block for each pair
of units, see Figure 1(b)), whereas the Hessian obtained with the
MSE criterion remains full, as shown in Figure 1(a).

Note also that some researchers proposed to add a hyperbolic
tangent at the output layer of the MLP proposed in (2) to improve
classification performances, when training with an MSE criterion.
With similar derivations, it is possible to show that this hyperbolic
tangent tends to improve the block-diagonality of the Hessian, but
with the drawback that this block-diagonality corresponds to a zero
first derivative of the cost function with respect to the weights.
Thus, we observed that the performances were in practice signif-
icantly worse than the performances of an MLP trained with the
cross-entropy criterion (see [4] for more details).

4. SYM MARGIN FOR MLPS

Support Vector Machines (SVMs) [7] generally yield good per-
formance as compared to other algorithms. Given the two-class
classification problem presented in Section 2, a linear SVM finds a
separating hyper-plane which maximizes the margin between this

0.25 04
035
0.2

(a) Hessian for MSE (b) Hessian for CE

Fig. 1. Description of the Hessian matrix obtained with an MLP
trained with the MSE criterion in (a) and with the CE criterion in
(b). The Hessian has been averaged over all the examples. MLPs
have 10 hidden units. Each block corresponds to a pair of hidden
units, and is represented by its spectral norm. Results on the Forest
dataset, with 10,000 training examples, after 5 iterations.

hyper-plane and the two classes. Thus, the SVM solution is a
trade-off between maximization of the margin and minimization
of the classification error. More formally, given a hyper-plane
fap(x) = 0With fo,(x) = ax+b(a € R% b € R), the
SVM problem is equivalent to minimize

Lia, b) = Slalf+ Y 1= ypefas(x)ls @)
t=1

where |z|+ = max(0,z2), and 4 € R™ is a constant which acts
as a trade-off between the first term which corresponds to the mar-
gin maximization, and the second term which tries to force the
two classes to be separated. Non-linear SVMs are obtained by
projecting input vectors in a higher dimensional space, and by
maximizing the margin in this higher dimensional space, using
the so-called kernel trick. As MLP proposed in (2) first sends
input vectors into a non-linear space using the hidden layer, and
then separates the data in this space using the output layer, we
could maximize the margin in the non-linear space of the MLPs,
using the stochastic version of the criterion (8), as already sug-
gested in [8]. Unfortunately, even if this criterion led in practice
to similar training performances as compared to the CE criterion
for ;. = 0, the training was significantly slowed down for ;x> 0.
This could be explained with the fact that when p > 0, we force
the output weights of the MLP to be small, which reduces the gra-
dient received by the hidden units. In order to fix this problem, we
propose to use instead the following cost function:

C(f(x), y) = 18 —yf(¥)|+ ©)

where 8 € R™ is a hyper-parameter similar to ;, which controls
the trade-off between the margin maximization and the separation
conditions. After some arithmetics, we obtain the margin %.
In order to guarantee that we increase this margin by increasing 3,
we can fix the norm ||| to an arbitrary chosen value, but there
is an even simpler solution: we can fix the output weights « to the
same value (no training). This has a sense in our case, because it
has been shown that such an MLP can approximate any kind of
boolean functions, and thus, can be applied to classification [9]. In
practice, these two techniques to increase the margin gave simi-
lar results in training and generalization performances. The results

that will be shown in the following sections were produced by fix-
ing the output weights to a constant.

4.1. Training Performances

Not considering the rare case y f(x) = 1 where the cost function
is not differentiable, we can derive the following Hessian:

PExy o .,
e =0 (i#7J).

The Hessian of the cost function is thus completely block-diagonal,
which guarantees the local independence in the training of the hid-
den units. This is verified in practice on the training performances,
which are similar to the training performances obtained with a CE
criterion, when we do not maximize the margin, that is, for small
values of 3.

4.2. Improving Generalization Performances

— Forest
- - - Connect-4

Forest Validation Error Rate (%)
Connect-4 Validation Error Rate (%)

0.2 0.4 0.8 1

0.6
Margin
Fig. 2. Evolution of the validation error with respect to the margin

for an MLP with outputs weights « fixed to 1. Results on Forest
dataset.

Following the theory of Section 4, there is in practice an opti-
mal size of the margin as suggested in Figure 2. The best general-
ization performances (shown in Table 2), obtained after tuning the
margin and all other hyper-parameters according to the validation
set, were 8.5% error on the test set of Forest and 10.3% error on
the test set of Connect-4. These are great improvements (statisti-
cally significant with 99% confidence) compared to a standard CE
criterion which obtained respectively 11.1% and 11.4% of testing
error rates. Moreover, well tuned SVMs with RBF kernel trained
using the fast SVMTorch package are significantly worse, larger
and slower on these two tasks.

5. CONCLUSION

In this paper we have analyzed gradient descent algorithms with
respect to several important aspects. As already known, the Hes-
sian plays a major role in the effectiveness of any gradient descent
algorithm. We explained why a block-diagonal Hessian should
yield more efficient training algorithms. We showed on common
models how the choice of the training criterion influences the Hes-
sian matrix, and hence how to select an efficient training criterion.
Finally, we introduced a new cost function for MLPs, inspired by
the SVM algorithm which yields a block-diagonal Hessian and en-
ables the control of the margin in the hidden layer space. This cost
function yielded (statistically significantly) better generalization
performance on two benchmark datasets in much less time than
SVMs. This work shows that a carefully tuned gradient descent
can still be competitive and even outperform recent machine learn-
ing algorithms in training and generalization performance, but also
in training time.

6. REFERENCES

[1] C. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

[2] Y. LeCun, L. Bottou, G.B. Orr, and K.-R. Milller, “Efficient
backprop,” in Neural Networks: Tricks of the Trade, G.B. Orr
and K.-R. Mller, Eds., pp. 9-50. Springer, 1998.

[3] T. Battiti, “First and second-order methods for learning: Be-
tween steepest descent and Newton’s method,” Neural Com-
putation, vol. 4, no. 2, pp. 141-166, 1992.

[4] R. Collobert and S. Bengio, “A new margin-based criterion
for efficient gradient descent,” Technical Report IDIAP-RR
03-16, IDIAP, 2003.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural Net-
works, vol. 2, pp. 359-366, 1989.

[6] R.O. Duda and P.E. Hart, Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

[7]1 V.N. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1995.

[8] S. Zhong and J. Ghosh, “Decision boundary focused neu-
ral network classifier,” in Intelligent Engineering Systems
Through Artificial Neural Networks (ANNIE). 2000, ASME.

[9] P. Auer, H. Burgsteiner, and W. Maass, “Reducing com-
munication for distributed learning in neural networks,” in
ICANN’2002, J. R. Dorronsoro, Ed. 2002, vol. 2415 of Lec-
ture Notes in Computer Science, pp. 123-128, Springer.

Model Cost ' Test Err. (%) HU Time Factor
Function Forest | Connect-4 | Forest | Connect-4 | Forest | Connect-4
SVM SVM 12.2 12.6 | 34291 18156 2.7 3.6
MLP MSE 13.9 12.8 200 500 0.4 1.0
MLP CE 11.1 114 500 500 1.0 1.0
MLP Margin 85 10.3 500 500 1.0 1.0

Table 2. Test errors of several models, including SVMs. Note that all hyper-parameters, especially the number of hidden units were chosen

according to validation sets.

