Journal of Machine Learning Research 1 (2001) 143-160 Submitted 7/00; Published 2/01

SVMTorch: Support Vector Machines for Large-Scale
Regression Problems

Ronan Collobert COLLOBERQIDIAP.CH
IDIAP

CP 592, rue du Simplon 4

1920 Martigny, Switzerland

tel: +41 27 721 77 31

fax: +41 27 721 77 12

Samy Bengio BENGIOQIDIAP.CH
IDIAP

CP 592, rue du Simplon j

1920 Martigny, Switzerland

tel: +41 27 721 77 39

faz: +41 27 721 77 12

Editor: Robert C. Williamson

Abstract

Support Vector Machines (SVMs) for regression problems are trained by solving a
quadratic optimization problem which needs on the order of > memory and time resources
to solve, where [is the number of training examples. In this paper, we propose a decompo-
sition algorithm, SVMTorch!, which is similar to SVM-Light proposed by Joachims (1999)
for classification problems, but adapted to regression problems. With this algorithm, one
can now efficiently solve large-scale regression problems (more than 20000 examples). Com-
parisons with Nodelib, another publicly available SVM algorithm for large-scale regression
problems from Flake and Lawrence (2000) yielded significant time improvements. Finally,
based on a recent paper from Lin (2000), we show that a convergence proof exists for our
algorithm.

1. Introduction

Vapnik (1995) has proposed a method to solve regression problems using support vector
machines. It has yielded excellent performance on many regression and time series prediction
problems (see for instance Miiller et al., 1997, or Drucker et al., 1997). This paper proposes
an efficient implementation of SVMs for large-scale regression problems. Let us first recall
how it works.

Given a training set of | examples (x;, y;) with @; € E and y; € R, where E is an
Euclidean space with a scalar product denoted (-), we want to estimate the following
linear regression:

1. SVMTorch is available at http://www.idiap.ch/learning/SVMTorch.html.

(©2001 Ronan Collobert and Samy Bengio.

COLLOBERT AND BENGIO

f®)=(w-z)+b

(with b € R) with a precision e. For this, we minimize
1 l
5wl + CY lyi — f(@i)le
i=1

where %||w||? is a regularization factor, C is a fixed constant, and |.|. is the e-insensitive
loss function defined by Vapnik:

|z|¢ = max{0, |z| — €} .

Written as a constrained optimization problem, it amounts to minimizing

l
r(w, & &%) = Jllwl? + (6 + &)

=1
subject to
(w-zi) +b) —yi < e+ & (1)
yi — (w- o) +b) < e+ & (2)

To generalize to non-linear regression, we replace the dot product with a kernel k(-).
Then, introducing Lagrange multipliers a and a*, the optimization problem can be stated
as:

Minimize the objective function

W(a, o) = %(a* — @)K (0 —a) — (0" —)"y + e(a* +)" 1 3)
subject to
(a—a*)'1=0 (4)
and
0<af, ; <C, i=1.. (5)

where 1 is the unit vector and K is the matrix with coefficients K;; = k(x;, ;). The
estimate of the regression function at a given point is then

l

fl@) = (o} — aw)k(xi, &) + b

i=1

144

SVMSs FOR LARGE-SCALE REGRESSION

where b is computed using the fact that (1) becomes an equality with & =0if 0 < a; < C
and (2) becomes an equality with £ =0if 0 < o} < C.

Solving the minimization problem (3) under the constraints (4) and (5) needs resources
on the order of /2 and is thus difficult for problems with large .

In this paper, we propose a method to solve such problems efficiently using a decomposi-
tion algorithm similar to the one proposed by Joachims (1999) in the context of classification
problems. In the next section, we give the general algorithm and explain in more detail each
of its main steps and how they differ from other published algorithms, as well as a discussion
on convergence and on some important implementation issues, such as a way to efficiently
handle the kernel matrix computation. In the experiment section, we compare this new
algorithm on small and large datasets to Nodelib, another SVM algorithm for large-scale
regression problems proposed by Flake and Lawrence (2000), then show how the size of the
internal memory allocated to the resolution of the problem is related to the time needed to
solve it, and finally how our algorithm scales with respect to .

2. The Decomposition Algorithm

As in the classification algorithm proposed by Joachims (1999), which was based on a idea
from Osuna et al. (1997), our regression algorithm is subdivided into the following four
steps, which are explained afterward in the following subsections:

1. Select ¢ variables a; or o as the new working set, called S.

2. Fix the other variables F to their current values and solve the problem (3) with respect
to S.

3. Search for variables whose values have been at 0 or C for a long time and that will
probably not change anymore. This optional step is the shrinking phase, as these
variables are removed from the problem.

4. Test whether the optimization is finished; if not, return to the first step.

Many other decomposition algorithms for regression have been published recently, and
a comparison is given later in section 2.6.

2.1 Selection of a New Working Set

We propose to select a new set of ¢ variables such that the overall criterion will be optimized.
In order to select such a working set, we use the same idea as Joachims (1999): simply search
for the optimal gradient-descent direction p which is feasible and which has only ¢ non-null
components. The variables corresponding to these components are chosen to be the new
working set S.

We thus need to minimize:

(@, 0%) P (6)

with

COLLOBERT AND BENGIO

subject to:
1"d—1"d*=0 (7)
d; >0 for 7 suchthat o; =0
dy >0 for ¢ suchthat o} =0 (8)
d; <0 for 4 suchthat o;=0C
dy <0 for ¢ suchthat o} =0C
and
-1 <p<1 (9)
card{p; : p; #0} =q. (10)

Since we are searching for an optimal descent direction, which is a direction where the
scalar product with the gradient is the smallest, we want indeed to minimize (6). The
conditions (7) and (8) are necessary to ensure the feasibility of the obtained direction. The
condition (9) is there only to ensure that the problem has a solution. Finally, (10) is imposed
because we are searching for a direction with only ¢ non-null components.

Note that the derivative of W can be easily computed:

R]

In order to solve this problem, it thus suffices to consider
Wi = 51 sz)
where §; =1 for 1 <4</l and d; = —1for [+ 1 <7 < 2][. To simplify, let ¢ be even, and let
us sort the w; in decreasing order. Let us then denote ¢ as the bijection of {1...2[} into
itself such that the w, ;) are sorted. Let us then select the g/2 first indices ¢(i) such that:

if (i) <1, we have 0 < ay; < C

if (i) > 1, we have 0 < af;y_; <C ;

and let us select also the ¢/2 last indices ¢(i) such that:
if p(i) <1, we have 0 < a5 < C

if (i) > 1, we have 0 < a;y_; < C.

Since we are searching for exactly ¢ variables, the ¢(i) must be distinct. We could have
to reduce ¢ if one variable is selected twice.

146

SVMSs FOR LARGE-SCALE REGRESSION

Lemma 1 Let us now denote ¢;, 1 = 1...q, the q indices we just chose, then the direction
p such that

—(5]' if j e {Cl...c%}
pj = (5jifj€{0%+1...cq}
0 otherwise

is a solution of the minimization problem (6).

Proof: Let us go back to the minimization problem of the function

(Zl, 221) — Z Wj 2; (11)

i=1...21
subject to
D z=0 (12)
i
1< Z S 1 (13)
and
card{z;, z; # 0} = ¢ (14)

with z; = d;p;. (The reasoning is the same if we take the constraints (8) into account).

In the case where 2] = g = 2r, it is easy to see that the minimum is obtained for z; = —1
ifi=1...rand z; =1if 4 = r + 1...¢: if for instance z;, is augmented by v > 0 for a
ip < 7, then one needs to compensate by —y another z; to maintain (12). Since we want
to minimize (11), the best thing to do, knowing that the w; are sorted in reverse order and
keeping in mind the constraint (13), is to modify z, and thus to fix z;, = 1 — . Equation
(11) is then augmented by (wj, — wq)7y, which is a positive value because the w; are sorted
and thus we get out of the minimum.

In the case where 2[> g = 2r, suppose we found a z which is a solution of (11). Let
us denote ki ...k, the ¢ indices of the components of z which are non-null. Using the
same argument as in the previous paragraph, it is clear that zj, ...z;, = —1 and that
Zk,+1--- 2k, = 1. In other words, if z is a solution of our problem, then we necessarily have
zg; = 1. Considering again the order of the w;, it becomes evident that we have to take
(k1 =1)...(ky =7) and (kpy1 =20 —1) ... (kg = 21).

O

Our new working set S is then composed of the g variables corresponding to the indices

¢; (where an index ¢; <1 corresponds to a, and an index ¢; > [corresponds to a:i_l).

2.2 Solving the Subproblem

We want to solve the problem (3) taking into account variables S only. To simplify the
notation, let us define

COLLOBERT AND BENGIO

and

= (x x)

[—y—1e
b_(—y—l-le)'

The problem (3) is thus equivalent to minimizing

as well as

~ 1

W(B) =8 KB-B'b (15)
subject to
B'1=0 (16)
and
0<&3<C, i=1.21, (17)

where again §; =1 for 1 <i<land é; = —1forl+1<17 <2l

Now let us suppose we can decompose each of the following variables into two parts
(after having reordered the variables accordingly): the first part corresponds to variables S
and the second part corresponds to the fixed variables F:

_(Bs
s-()
and

Replacing these variables in (15), (16) and (17), and taking into account the fact that
Kgf = Krs, the minimization problem is now

W(Bs) = 588 KssBs — B (bs — KsrBy) (18)

(removing the constants that depend only on F), subject to

Bsl=—Pr1 (19)
and
0<6;8s,<C, i=1..q, (20)
where §; = 1 if the i*® variable in the set S corresponds to an «;, 8; = —1 if it corresponds
to an a;.

148

SVMSs FOR LARGE-SCALE REGRESSION

Minimizing (18) under the constraints (19) and (20) can be realized using a constrained
quadratic optimizer, such as a conjugate gradient method with projection or an interior
point method (Fletcher, 1987). Moreover, following Platt’s idea in SMO (Platt, 1999), if
one fixes the size of the working set S to 2, the problem can also be solved analytically.

This particular case is important because experimental results show that it always gives
the fastest convergence times. We explain it here because it is a different minimization
problem from the one proposed by previous authors such as Smola and Scholkopf (1998);
in fact, it is easier because it only has 2 variables and not 4.

Let us again simplify the notation:

fcssz(
)

Minimizing (18) under the constraints (19) and (20) is thus equivalent to minimizing

(21, z2) —> % (k11 22 4 koo 22 + 2k10 21 22) — hiz1 — hozo (21)
subject to
21+ 20 =C((22)
and
0 <621, dp29 <C. (23)

We are searching for a minimum in (21) with respect to z; along the line (22). By
inserting (22) into (21), and after some derivations, it is now equivalent to minimizing

1
Az — 3 (k11 — 2k19 + kag) 23 + [(k1a — ka2) ¢ — h1 + ho] 21.

In the case? where 1 = k11 — 2k13 + koo > 0, this function has a unique minimum for

L0 (koo — k12) C + h1 — ho
1_ .
n

2. Note that this is the most common case. For instance for a Gaussian kernel with distinct examples x;,
it is easy to see that it is always the case.

149

COLLOBERT AND BENGIO

Let us now consider the constraints (22) and (23). They force z; to stay between L and
H where
L = max(0, ¢ —C) o5 :
H = min(C, ¢) if9y=1and 6, =1
L = max(0

H = min(C C+C ifglzlandSQZ—

o= man C 1f(51:—1and52:1

L= max

H = min(0 C+C ifslz—landSQZ—

)
L = max(—C, { — C}
)

Thus, taking

H if2)>H
zf’c: 20 fL<2<H
L ifz2) <L

and

the minimum of (21) under the constraints (22) and (23) is obtained at (2]¢, 23) if n > 0.
In the pathological case where n < 0, it is clear that the solution

o [L ifAL)<A(H)
1= { H if A(L) > A(H)

and

is the minimum.

2.3 Shrinking

The idea of shrinking is to remove some variables whose values have been equal to the
bounds 0 or C for a long time, and that will probably not change anymore. To do this, we
use the fact that (a, a*) minimizes the problem (3) under the constraints (4) and (5) if
and only if there exists numbers A"P € R2 X% ¢ R2 \¢4 ¢ R that verify the following
KKT conditions:

1

W’(a, a*) +)\eq (_1

) _ Alow LAY = (24)

MNowg, =0, i=1...1 and Mo, =0, i=(1+1)...2 (25)

MNP(;—C)=0, i=1...1 and NP (aj;,—C)=0, i=(+1)...20 (26)

150

SVMSs FOR LARGE-SCALE REGRESSION

Alow > (27)
AP > 0 (28)
(@—a*) 1=0 (29)
0<a*, a<C. (30)

Note that if)\i-"w > 0, then the corresponding variable is equal to 0. Also, if A\Y* > 0,
then the corresponding variable is equal to C. The idea is thus to search at each iteration
for variables AP, A% and \¢¢ that verify as well as possible® the equations (24)-(28), and
to remove a variable whose value is equal to 0 if its coefficient A% is strictly positive (or
just above a constant €sppink) during a given number of iterations. Using the same idea, we
also eliminate a variable whose value is equal to C if its coefficient ;" stays strictly positive
for a sufficient number of iterations.

To estimate A% or AP, we start by estimating A? (note that if 0 < a; < C then
Aew =\ = 0 and if 0 < o < C then A% = N\, = 0). Noting

141 141
A={i, 0<a; <C}, B={i, 0<a; <C}
we have (with A standing for an estimation of \) :

Aol = \AUB| (Z (o, o ZW;(G, a*)) . (31)

1€A

Then if we have

a; =0 wecompute A = A4 4 W,

af =0 we compute %\i‘_’l_“l’ = —deo 4 sz'i‘l)
;i =C wecompute AP = —X4 — W,

af =C we compute)\Z‘fl = 4 — W;H

and if a variable stays a sufficient number of iterations at 0 (or C) with its corresponding
coefficient Aé-ow > €sprink (OT /\;-Lp > €sprink), then we remove it from the problem. Note that
this can lead to an incorrect solution if €zpj,x Or the number of iterations before removing
a variable is too small. This is verified in the experimental section.

2.4 Termination Criterion

Given what has been said in the section on shrinking, if we can always have (29) and (30)
during the resolution of a subproblem, a reasonable termination criterion is to verify that
the X\ estimated by (31) and (32) verifies the conditions (24)-(28) with a given precision

€end-
Thus, we simply verify that

3. If we were really able to find such variables, this would mean that (o, @*) is a solution of our problem.

151

COLLOBERT AND BENGIO

for ¢ such that 0 < §; B; < C: A1 — €epg < —5iW;(a, a*) < A+ €eng
for 4 such that 8; = 0: W;(a, a*) + §; A > —€eng
for 7 such that §; 3; = C : Wi (e, a*) + 6,39 < €eng

with d; =1for 1 <i<I,§;=—1for (I +1) <i <2l and

2.5 Implementation Details

Note that in the algorithm described here, only two steps might be time consuming: the
one that computes W, and the one that computes bs — Ksz8 in (18).

We therefore propose to keep in memory a table of WZ’ . Moreover, to update this
variable, we can see that

fori<t W, =Wy o Ky (ol — o) — 0 g Koy (o) i@

J J J
fori>1 W, (t+1) _ W, t) Z]_ESI Ki; a§t+1) _ agt) + ZjESQ K a;(H—l) _ a; (t)
where
S1={i, a; €S} and Sy ={i, of € S}
For the computation of bs — Ksr3 +, we can use the following trick:
(bs - ksrﬂf)i = (bs); — (R'Sfﬂf + Rssﬂs)i + (f(ssﬂs)i

~W; + (.f(ssﬂs) if i<l

3
Wi + (ngﬁs)i if i>1.

With these two ideas, one can reduce considerably the computational time: instead of
computing all the lines of the matrix K, one can compute only the lines corresponding to
the variables in S.

Since we only need these lines for the computations, and since it quickly becomes in-
tractable for large problems to keep the whole matrix K in memory (the size of the matrix
being quadratic with respect to the number of examples), it is interesting to implement a
cache that keeps in memory the lines of K that corresponds to the most used variables
instead of recomputing them at each iteration.

2.6 Comparisons with Other Algorithms

Recently, many authors have proposed decomposition algorithms for regression. For in-
stance, Shevade et al. (2000) proposed two modifications of the SMO algorithm from Platt
(1999) for regression, based on a previous paper from the same team (Keerthi et al., 1999)
for classification problems. Laskov (2000) proposed also a decomposition method for re-
gression problems which is very similar to the second modification proposed by Shevade et
al. In fact, it is easy to see that Laskov’s method with a subproblem of size 2 uses the same
selection algorithm as well as the same termination criterion as Shevade et al.

152

SVMSs FOR LARGE-SCALE REGRESSION

Their method for selecting the working set is very similar to the one we show in this
paper, but while we propose to select variables ; independently of their counterparts o,
they propose to select simultaneously pairs of variables {a;, a}}. Even if this seems to be
a small difference, let us note that o; o = 0 Vi at the optimal solution as well as during the
optimization process, as proved by Lin (2000) in the case of algorithms such as the one we
propose here.* Thus, one of the two variables «; or a7 is always equal to 0, and choosing
the o; and «f independently can thus help to quickly eliminate many variables, thanks to
the shrinking phase,® which, of course, has a direct impact on the speed of our algorithm.
In fact, working with pairs of variables would force the algorithm to do many computations
with null variables until the end of the optimization process.

Similarly, Smola and Schélkopf (1998) also proposed earlier to use a decomposition
algorithm for regression based on SMQO, using an analytical solution for the subproblems,
but again they proposed to select two pairs of variables (two a and their corresponding o)
instead of two variables as we propose in this paper.

Finally, Flake and Lawrence (2000) proposed a modification of SMO for regression that
uses the heuristics proposed by Platt (1999) and those from Smola and Scholkopf (1998),
but their modification uses a new variable A\; = a; — . Once again, this forces the use of
the pairs {e;, af} during the computations.

The originality of our algorithm is thus to select independently the variables a; and o,
which has the side effect of efficiently adapting the shrinking step proposed in classification
by Joachims (1999) (it is indeed less easy to think of an efficient shrinking method in the
context of pairs of variables). This also helps to simplify the resolution of the subproblem
in the case where ¢ = 2. Finally, experiments given in section 3 suggest that this idea leads
to faster convergence times.

2.7 Convergence

In a recent technical report (Collobert & Bengio, 2000), we have shown that our algorithm
converges in the case where the working set size is equal to 2 and without shrinking, for
any kernel that verifies Mercer’s conditions. To do so, we have used a theorem proved
by Keerthi and Gilbert (2000). Note however that more recently, Lin (2000) has shown
the convergence of our algorithm for any value of the working set size (but again without
shrinking), under the following hypothesis:

Assumption 1 The matriz K satisfies

mIin(min(ez'g(KH))) >0

where I is any subset of {1,...,l} with |I| < q, Kir is a square sub-matriz of K, and
min(eig(.)) is the smallest eigenvalue of a matriz.

Note finally that shrinking is a heuristic and thus using it should speed up the algorithm
but no convergence proof will hold anymore.

4. Note also that testing whether the ; and] are non-zero at the same time would be a waste of time.
5. This is verified in practice.

153

COLLOBERT AND BENGIO

3. Experimental Results

We compared our SVM implementation for regression problems (SVMTorch) to the one
from Flake and Lawrence (2000) using their publicly available software Nodelib. This is
interesting because Nodelib is based on SMO where the variables o; and o] are selected
simultaneously, which is not the case for SVMTorch. Note also that Nodelib includes some
enhancements compared to SMO which are different from those proposed by Shevade et al.
(2000).

Both these algorithms use an internal cache in order to be able to solve large-scale
problems. All the experiments presented here have been done on a LINUX Pentium III
750Mhz, with the gcc compiler. The parameters of the algorithms were not chosen to
obtain the best generalization performances, since the goal was to compare the speed of the
algorithms. However, we have chosen them in order to obtain reasonable results. Both
programs used the same parameters with regard to cache, precision, etc. For Nodelib,
the other parameters were set using the default values proposed by the authors.® All the
programs were compiled using double precision. We compared the programs on five different
tasks :

Kin This dataset” represents a realistic simulation of the forward dynamics of an 8 link
all-revolute robot arm. The task is to predict the distance of the end-effector from a
target, given features like joint positions, twist angles, etc.

Sunspots Using a series representing the number of sunspots per day, we created one
input/output pair for each day: the yearly average of the year starting the next day
had to be predicted using the 12 previous yearly averages.

Artificial This is an easy artificial dataset based on Sunspots: we create a daily series
where each value is the yearly average centered on that day. The task is to predict a
value given the 100 previous ones.

Forest This dataset® is a classification task with 7 classes, where only the first 35000
examples were used here. We transformed it into a regression task where the goal
was to predict +1 for examples of class 2 and —1 for the other examples. Note that
since class 2 was over-represented in the dataset, this transformation leads to a more
balanced problem.

MNIST This dataset® is a classification task with 10 classes (representing handwritten
digits). Again, we transformed it in a regression problem where the goal was to
predict +1 for examples of classes 0 to 4 and —1 for the other examples.

Note also that Forest and MNIST are respectively 78% and 81% sparse (contain respec-
tively 78% and 81% null values in their input matrices). Since SVMTorch can handle sparse
data (as can SVM-Light), we tested this option in the experiments described in TABLES 3

6. For 5000 examples, we used -clever -best -lazy, while for more than 5000 examples, we used -clever
-best -lazy -ssz 200.

7. Available on http://www.cs.toronto.edu/"delve/data/kin/desc.html.

8. Available on ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/covtype.info.

9. Available on http://www.research.att.com/~yann/ocr/mnist/index.html.

154

SVMSs FOR LARGE-SCALE REGRESSION

and 4. The parameters used to train the datasets can be found in TABLE 1. Note that
all experiments used a Gaussian kernel'® and a value of C = 1000, and the termination
criterion was the verified KKT conditions with a precision of 0.01.

Train # Test Dim o €

Kin 6192 2000 32 100 0.5
Artificial 20000 2000 100 100 0.5
Forest 25000 10000 54 400 0.7

Sunspots 40000 2500 12 900 20
MNIST 60000 10000 784 1650 0.5

Table 1: Parameters used for each dataset: # Train = maximum number of training exam-
ples, taken at the begining of the dataset, # Test = number of test examples, taken
just following the training set examples, Dim = input dimension, ¢ = parameter
of the Gaussian kernel, ¢ = value used in the e-insensitive loss function.

For the experiments involving SVMTorch, we have tested a version with shrinking but
without verifying at the end of the optimization whether all the suppressed variables veri-
fied the KKT conditions (SVMTorch), with no shrinking (SVMTorchN), and a version with
shrinking and verification at the end of the optimization, as done in SVM-Light (SVM-
TorchU). As it will be seen in the results, the first method has a big speedup advantage,
but only a small negative impact on the generalization performance in general. However,
sometimes the default value of 100 iterations before a variable is removed by shrinking must
be changed to obtain the correct solution.

3.1 Working Set Size

Using the first 10000 examples of each dataset (or 6192 for Kin which is too small), we
trained different models using various values of ¢, from 2 to 100. We used a fixed cache size
of 100Mb and turned on the shrinking, but did not use the sparse mode. The optimizer used
to solve the subproblems of size ¢ > 2 was a conjugate gradient method with projection®!.
TABLE 2 gives the results of these experiments. It is clear that ¢ = 2 is always faster than

any other value of q. Thus, in the following experiments, we have always used ¢ = 2.

3.2 Small Datasets

Let us now compare SVMTorch and Nodelib on small datasets. In the results given in
TABLE 3, only the first 5000 training examples were used. The size of the cache was set to
300Mb, so that the whole kernel matrix could be kept in memory. For each problem, we also
computed the output median (which minimizes the mean absolute error (MAE) without any
information about the inputs) on the training set and computed the performance of this
median over the training and the test sets in order to have a better idea of the performance
of the various algorithms.

10. The kernel is k(z, y) = exp(—||z — y||*/a?).
11. Actually, the original source code of this optimizer has been done by Leon Bottou.

155

COLLOBERT AND BENGIO

Working set size
2 4 10 50 100
Kin 11 14 16 28 54
Artificial | 98 149 190 629 1537
Forest 272 406 462 670 981
Sunspots 7T 11 15 45 89
MNIST | 573 664 829 1657 2213

Table 2: Training time (in seconds) as a function of the working set size, for non-sparse

data.
Dataset Model Time Objective Model Median

NSP SP | # SV Function | Train Test | Train Test
SVMTorch 7 - 936 -173977.85 0.30 0.31

Kin SVMTorchU 15 - 936 -173977.85 0.30 0.31 0.37 0.38
SVMTorchN 45 - 941 -173982.65 0.30 0.31
Nodelib 157 - 932 -174019.67 0.30 0.31
SVMTorch 31 - 342 -13594.01 0.25 0.52

Artificial SVMTorchU 166 - 367 -13703.07 0.24 0.51 | 25.16 27.95
SVMTorchN 448 - 370 -13701.41 0.24 0.51
Nodelib 231 - 342 -13707.29 0.24 0.51
SVMTorch 21 21 993 -1012.46 0.51 0.80

Forest SVMTorchU 65 43 1051 -1030.78 0.41 0.80 0.38 1.59
SVMTorchN 110 115 1058 -1030.43 0.41 0.80
Nodelib 542 - | 1032 -1031.54 0.41 0.80
SVMTorch 2 - 420 -3489571.13 9.65 10.12

Sunspots SVMTorchU 9 - 422 -3489630.53 9.65 10.11 | 33.02 52.58
SVMTorchN 38 - 422 -3489628.27 9.64 10.11
Nodelib 327 - 422 -3489630.65 9.64 10.11
SVMTorch 118 79 1861 -190.77 0.39 048

MNIST SVMTorchU 147 98 1861 -190.77 0.39 048 098 0.97
SVMTorchN 152 104 | 1861 -190.77 0.39 048
Nodelib 2216 - | 1878 -190.80 0.39 048

Table 3: Experiments on small training sets. SVMTorchN = SVMTorch without shrinking,
SVMTorchU = SVMTorch with shrinking and unshrinking, Time NSP = time (in
seconds) for non-sparse data format, Time SP = time (in seconds) for sparse data
format, # SV = number of support vectors, Objective Function = value of (3) at
the end of the optimization, Model Train = mean absolute error (MAE) over the
training set, Model Test = MAE over the test set, Median Train = MAE over the
training set with the median as predictor, Median Test = MAE over the test set
with the median as predictor.

156

SVMSs FOR LARGE-SCALE REGRESSION

As can be seen, for all the datasets, SVMTorch is usually many times faster than
Nodelib (except for Artificial in the case of SVMTorch without shrinking). Since the whole
matrix of the quadratic problem was in memory, handling of the cache had no effect on
the speed results. Thus one can conclude that one of the main differences between these
algorithms is the selection of the subproblem, and that selecting the «; independently of the
a7 is very efficient. However, Nodelib gave slightly better results in terms of the objective
function (probably due to the fact that their termination criterion is stronger than ours;
see (Collobert & Bengio, 2000) for a comparison between termination criteria), but not
in terms of test error. Note that for problems of this size, shrinking does not cause the
performance to deteriorate too much (check the values of the objective function as well as
the training and test set performances) but does speed the algorithm up a lot. Note also
that using the sparse format was not good in the case of Forest but was good for MNIST,
which has a higher input dimension: this means that the cost induced by the use of sparse
format is balanced by the gain obtained in the kernel computation only when the input size
is large enough.

3.3 Large Datasets

Dataset Model Time Objective Model Median

NSP SP | #SV Function | Train Test | Train Test
SVMTorch 11 — | 1140 -212439.78 | 0.30 0.31

Kin SVMTorchU 32 — | 1140 -212439.78 | 0.30 0.31 037 0.38
SVMTorchN 86 — | 1140 -212439.78 | 0.30 0.31
Nodelib 273 - 1138 -212478.38 | 0.30 0.31
SVMTorch 235 — 706 -39569.14 | 0.21 0.34

Artificial SVMTorchU 4394 - 817 -40025.98 0.20 0.33 | 27.29 14.25
SVMTorchN 9182 - 824 -40016.55 0.20 0.34
Nodelib 2653 - 764 -40043.94 | 0.20 0.33
SVMTorch 4573 4392 | 3019 -56266.94 1.63 1.82

Forest SVMTorchU || 40669 37769 | 4080 -78297.27 | 0.40 0.93 0.81 1.59
SVMTorchN | 79237 73045 | 4233 -78294.56 | 0.39 0.93
Nodelib 87133 — | 4088 -78384.15 0.39 0.93
SVMTorch 67 — | 1771 -11215476.03 | 8.97 12.72

Sunspots SVMTorchU 1290 —| 1822 -11229107.83 | 8.96 12.59 | 33.02 52.57
SVMTorchN 2606 — | 1820 -11229098.49 | 8.96 12.59
Nodelib 24022 — | 1818 -11229124.45 | 8.96 12.59
SVMTorch 9874 6460 | 8532 -1289.54 | 0.25 0.27

MNIST SVMTorchU || 33644 21482 | 8642 -1290.66 0.25 0.27| 098 0.97
SVMTorchN || 32095 20951 | 8634 -1290.57 | 0.25 0.27
Nodelib > 108 - - - - -

Table 4: Experiments on large training sets. See TABLE 3 for the description of the fields.

Let us now turn to experiments using large datasets. TABLE 4 shows the results using
the whole training sets for all datasets, again using a cache size of 300Mb. Since the
problems are now too big to be kept in memory, the implementation of the cache becomes
very important and comparisons of the algorithms used in SVMTorch and Nodelib become

157

COLLOBERT AND BENGIO

more difficult. Nevertheless, it is clear that SVMTorch is always faster, except again for
Artificial in the cases with no shrinking or with unshrinking, but the performance on the
test sets is similar. However, note that shrinking sometimes leads to very poor results in
terms of test set performance, as is the case on Forest. It is thus clear that shrinking should
be used with care, particularly for large datasets, and the parameter that decides when to
eliminate a variable should be tuned carefully before running a series of experiments on the
same dataset. Note also that Nodelib was not able to solve MNIST after 11 days.

3.4 Size of the Cache

We also did some experiments to measure the effect of the size of the cache on the training
time. TABLE 5 shows the results for different cache sizes, from 10 to 100Mb. In these
experiments, we used the first 10000 examples of each dataset (6192 for the smaller Kin)
and used the non-sparse format. The only clear conclusion from these experiments is that
the higher the size of the cache, the faster SVMTorch is, but the relation is completely
problem dependent.

Size of the cache (in Mb)
10 20 30 40 50 60 70 8 90 100
Kin 11 11 11 11 11 11 11 11 11 11
Artificial | 359 182 106 100 99 98 98 98 98 98
Forest 869 715 622 519 450 391 355 316 305 272
Sunspots 7 7 7 7 7 7 7 7 7 7
MNIST | 729 724 716 704 686 665 647 621 597 573

Table 5: Training time (in seconds) with respect to the size of the cache (in Mb).

3.5 Scaling with Respect to the Size of the Training Set

Finally, we tried to evaluate how SVMTorch (with shrinking and in non-sparse format) and
Nodelib scaled with respect to the size of the training set. In order not to be influenced by
the implementation of the cache system, we computed the training time for training sets
of sizes 500, 1000, 2000, 3000, 4000, and 5000, so that the whole matrix of the quadratic
problem could be kept in memory. Given the results, we did a linear regression of the log
of the time given the log of the training size and TABLE 6 gives the slope of this linear
regression for each problem, which gives an idea of how SVMTorch scales: it appears to be
slightly better than quadratic, and slightly better than Nodelib.

4. Conclusion

We have presented a new decomposition algorithm intended to efficiently solve large-scale
regression problems using SVMs. This algorithm followed the same principles as those
used by Joachims (1999) in his classification algorithm. Compared to previously proposed
decomposition algorithms for regression, we have proposed an original method to select the
variables in the working set. We have shown how to solve analytically subproblems of size

158

SVMSs FOR LARGE-SCALE REGRESSION

‘ Kin Artificial Forest Sunspots MNIST
Scale SVMTorch | 1.81 1.72 1.82 1.85 1.64
Scale Nodelib 1.83 1.93 2.09 2.44 1.75

Table 6: Scaling of SVMTorch and Nodelib for each dataset. Results give the slope of the
linear regression in the log-log domain of time versus training size.

2, as it is done in SMO (Platt, 1999). An internal cache keeping part of the kernel matrix
in memory enables the program to solve large problems without the need to keep quadratic
resources in memory and without the need to recompute every kernel evaluation, which
leads to an overall fast algorithm. We have also shown that there exists a convergence proof
for our algorithm. Finally, an experimental comparison with another algorithm has shown
significant time improvement for large-scale problems and training time generally scaling
slightly less than quadratically with respect to the number of examples.

References

Collobert, R., & Bengio, S. (2000). On the Convergence of SVMTorch, an Algorithm
for Large-Scale Regression Problems (IDIAP-RR No. 24). IDIAP. (Available at
ftp://www.idiap.ch/pub/reports/2000/rr00-24.ps.gz)

Drucker, H., Burges, C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector
regression machines. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in
Neural Information Processing Systems 9 (pp. 155-161). The MIT Press.

Flake, G., & Lawrence, S. (2000). Efficient SVM regression train-
ing with SMO. (Submitted to Machine Learning. Available at
http://external.nj.nec.com/homepages/flake/smorch.ps)

Fletcher, R. (1987). Practical Methods of Optimization. Chichester: John Wiley and Sons.

Joachims, T. (1999). Making large-scale support vector machine learning practical. In
B. Scholkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel Methods. The MIT
Press.

Keerthi, S. S., & Gilbert, E. G. (2000). Convergence of a Generalized SMO Algorithm
for SVM Classifier Design (Tech. Rep. No. CD-00-01). Control Division, Dept. of
Mechanical and Production Engineering, National University of Singapore. (Available
at http://guppy .mpe.nus.edu.sg/ “mpessk/svm/conv.ml.ps.gz)

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (1999). Im-
provements to Platt’s SMO Algorithm for SVM Classifier Design (Tech. Rep. No.
CD-99-14). Control Division, Dept. of Mechanical and Production Engineering, Na-
tional University of Singapore. (To appear in Neural Computation. Available at
http://guppy.mpe.nus.edu.sg/ “mpessk/smo mod.ps.gz)

159

COLLOBERT AND BENGIO

Laskov, P. (2000). An improved decomposition algorithm for regression support vector
machines. In S. Solla, T. Leen, & K.-R. Miller (Eds.), Advances in Neural Information
Processing Systems 12. The MIT Press.

Lin, C. (2000). On the Convergence of the Decomposition Method for Support
Vector Machines (Tech. Rep.). National Taiwan University. (Available at
http://www.csie.ntu.edu.tw/"cjlin/papers/conv.ps.gz)

Miiller, K.-R., Smola, A., Ritsch, G., Schélkopf, B., Kohlmorgen, J., & Vapnik, V. (1997).
Predicting time series with support vector machines. In W. Gerstner, A. Germond,
M. Hasler, & J.-D. Nicoud (Eds.), Artificial Neural Networks - ICANN’97 (pp. 999—
1004). Springer.

Osuna, E., Freund, R., & Girosi, F. (1997). An improved training algorithm for support
vector machines. In J. Principe, L. Giles, N. Morgan, & E. Wilson (Eds.), Neural
Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop (pp.
276-285). New York: IEEE Press.

Platt, J. C. (1999). Fast training of support vector machines using sequential minimal
optimization. In B. Schélkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel
Methods. The MIT Press.

Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000). Improvements
to the SMO algorithm for SVM regression. IEEE Transaction on Neural Networks,
11(5), 1188-1183.

Smola, A., & Scholkopf, B. (1998). A Tutorial on Support Vector Regression (Tech. Rep.
No. NeuroCOLT NC-TR-98-030). Royal Holloway College,University of London, UK.

Vapnik, V. (1995). The Nature of Statistical Learning Theory (second ed.). Springer.

160

